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On the Propagation of Transient Elastic Waves

By
Shozaburo NAGUMO

Abstract

The propagation of transient elastic waves in two dimensions is investigated by the
method of dual integral transformation. ILaplace transformation is applied to the time-
coordinate and Fourier transformation is applied to one space coordinate. Simple mathe~
matical expression of solving the problem is presented.

In chapter I and II, the re-written forms of the surface force problem and the
buried line source problem in solid are presented showing the way of application of the
dual integral transformation. In chapter III, the problem of reflection and refraction of
an acoustic pressure pulse at a liquid-liquid interface is taken so as to clear up the basic
picture of reflection and refraction of a pulse which has a curved wave front. In chapter
IV, diffraction of an acoustic pressure pulse by a finite fixed plane placed in liquid is
investigated. Application of convolution formula to the inverse transformation leads the
exact solution to a form of integral of elementary functions. An interpretation for the
mechanism of diffraction phenomenon is presented.

General Introduction

The rigorous treatment of transient elastic wave propagation was pio-
neered by Cagniard® by the method of implicit Laplace transformation. And
his method, Cagniard’s method, has been rewritten in the form of explicit
Laplace transformation by Dix”, and has been successfully applied to the gener-
ation and propagation of transient elastic wave by Dix®, Spencer?” and Garvin?
with results of better picture on the mechanism of Raylelgh wave generation on
a semi-infinite elastic medium and that of reflection at a liquid-liquid interface.

This paper reports a further application of methed of integral transforma-
tion to the theory of propagation of transient elastic waves in two dimensions.
Namely, in addition to Laplace transformation applied to the time coordinate,
Fourier transformation is applied to one space coordinate. Both wave equations
and boundary conditions are Laplace-Fourier transformed, and formal solutions
are obtained in the transformed space. Then the inverse transformation of the
formal solutions are evaluated. By so doing, mathematical expression of solving
the problem is reduced to a simple form, and Cagniard’s technique, which beats
the integral solution to the form of Laplace transformation integral, is logically
introduced by the translation property of Laplace transformation. Besides that,
physical and mathematical rigorousness are given to the conversion of parameters
and to the integration path by the Laplace transformation formula of d-function.
The principle and examples of application of integral transformation to the
boundary value problem of partial differential equation in the various field of
physics are well described by Sneddon?!??.

In chapter I and II, the rewritten form of the surface force problem and
the buried line source problem in solid are presented showing the way of appli-
cation of the integral transformation. As a consequence of Fourier transformation
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applied to a space coordinate, a solution for spacial transient surface force is
obtained. In chapter III, the problem of reflection and refraction of an acoustic
pressure pulse at a liquid-liquid interface is taken so as to clear up the basic
picture of reflection and refraction of a pulse which has a curved wave front.
In chapter 1V, diffraction of an acoustic pressure pulse by a finite fixed plane
placed in liquid is investigated.  Application of convolution formula to the
inverse transformation leads the exact solution to a form of integral of elementa-
ry functions. An interpretation for the mechanism of diffraction phenomenon is
presented.

I. Surface Force Problem

I. 1 Introduction

Propagation of a transient elastic wave generated by a suddenly applied
surface force has been studied by Lamb'”, Hirono®, Kasahara'®, Takeuchi and
Kobayashi®”, and Honda, Nakamura and Takagi'®. In this chapter, the mathe-
matical expression of the way of solving this surface force problem is rewritten in
a simple form showing the method of integral transformation which will be used
hereafter in this paper. And the exact solution of displacement given at every-
where in the medium is obtained for both concentrated and spacial surface forces.

I. 2 Wave equation and stress

The equations of motion in an elastic medium are

2
g 2 5, P = D e
0x ot 1)
04 . _ 0w '
(/1+,u)——ax +atw =0,
where
u, w: displacement in x, y direction
ou ow
A=
o0x N 0z
0, A u: density, Lamé’s constant, rigidity.
Introducing displacement potentials @ and ¢, by the relations
-t
g (1.2)
oo 0 _ 00
0z ox
the equations of motion are reduced to wave equations
) 1 0’g
V~¢ = 2 2
Vf gf 1.3)
2 = oY
V=V Tar
where
Vit = (A4 2p)/e and Vi* = pfp.
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Normal and tangential stress components are, when represented hy dis-
placement,

_ ,( Ou ow o, OW
Pe= (e + 50 ) ¥ 5
Ou ow did
Pe=r( o * on)
and, when represented by displacement potentials,
P, = xx 2 i — 2, ‘zz
{ i+ (A+24) 8 2 w5
sz = <2¢xz + ¢’zz - ¢’xx)

I. 3 Laplace transform of wave eguation and stress

Now we apply Laplace transformation with respect to £ to the wave equa-
tions (1.3) and stress (1.4). let @ (x, z p) and ¥ (x, z, p) be Laplace transform
of ¢ (% 2t and ¢ (x,2, #). By the definition of Laplace transform, they are

Oz p) = 6020 e dt

. (1.6)
Vix zp) = So ¢ (x, 2z 8) et di
Then, for Laplace transformed wave equation and stress, we have
f (V=)D =0 _
L(e—-mr=0, (L.7)
where
hZ = pZ/VI,Z’ kf.‘ = pZ/VSL’ (1.8)
and
| Pw= Do+ (A4 200 Dpo — 24U,
(1.9)

V Po= p (20, + V.. — W)

I. 4 Fourier transform of wave equation and stress

Let us apply Fourier transformation with respect to x to the Laplace
transformed wave equation (1.7) and stress (1.9). Let 6 (£, z, p) and & (€, z, p)
be Fourier transform of @ and ¥. By the definition of Fourier transform, they
are

& zp=_1"

o S:qj (x, 2, p) e dx

) (1.10)
P&z p = e S_mz[/' (x, 2, p) e dx

Then, for Laplace-Fourier transformed wave equation and stress, we have

ﬂ___ 2 98 R
ropiad bk Bl
dg
dz’

(1.11)

~ @+ =0



and
f Pzz = = 155 + u -+ 2/!) 52: -t 21‘/«‘5@2 *

\ P = p{(— 2@, + go + E0) (1.12)

I. 5 Laplace-Fourier transform of displacement and velocity

For the later use, let us show Laplace-Fourier transform of displacement
and velocity. Laplace transforms of displacement components U, W become,
from the relation (1.2),

[ U zp) =9+ 7,

\ Wix 2 p) = 0. — V. (1.13)
and Fourier transforms of them become

[&( 2P = — i@ + &

Lw (€ 2 ) = 6.+ 20 1
Likewise, Laplace transforms of velocity components are

[ Bimm =gl (1.15)

l Wix 2 p) =pW

hecause they are the time derivative™ of displacement, and Fourier transforms
of them are

[ & 2p)=pa
\ @ (€ 2 p) = pw (1.16)

In a similar way, Laplace-Fourier transforms of acceleration components become
(@ =pa

| & = o' (1.17)

I. 6 Formal solutions of the surface force problem

Let us treat the surface force problem ; the propagation of transient elastic
wave generated by the vertical force applied at the surface of a semi-infinite
elastic medium. Referring to Fig. 1, we take x-y axes on the surface and z-axis
vertically downward into the medium.

y

Z
Fig. 1

. .Foﬁ.r.ier transform pair used Fldgldx] = (—i§) Flgl
**  Laplace transform pair used  L[dgldt]l = pLIg]



When the vertical surface force is denoted by f (v, £), its Laplace trans-
form is given by

Flx p) = g:’f (x, 1) et di (1.18)

and its Fourier-Laplace transform is given by
£ & . 1 (oo .
Pt =) L F ) e ar . o
Boundary conditions to be satisfied at the surface z = 0, in the transformed
space are, from (1.12) and (1.19),
[ — X8 + A+ 2p) Bee + 20ipd. = T (&, p)
l = Eifgz -+ Jzz + 52(3 =0

The general solutions in the transformed space are obtained from (1.11)
and in this case, we have

(1.20)

Bz p)=AE p) e VBT 2

. T (121
Gl z,p) =BEp) e V-
A and B are determined by putting (1.21) into (1.20). Thus, we get
1 =
= g p) (282 + I 1.22
A FE ) £iE B (2 - (1.22)
1 = Ry
B = . 08 1/ £ 7 1:23
FE p) = pn {28 + B2 — 482V & + 1 VE + RF). (1.24)

Therefore, solutions of displacement potential *n Laplace-Fourier transformed
space are

3 (& = ——1 Fe ng&2 2 —VEripe z
[ FEnb) = Fg S €D TR e
1 T )
l ¢ z2p = FE.p) FE D) CEVE 4 p2) ¢ VT2
Displacement solutions are obtained from (1.25) and (1.14)
i = 4 F (e, P ) (— g = VEE 2
u FE p) JE D) 8+ BN (— i) e
+ F(El’ p) f (E. 1)) (21'5 VSZ + h’.’) (—V/SZ + kz) e VE2yRE 2
(1.26)
7 l = ooy~ VETE 2
D= pep L EDEE+E)—VELHE) ¢ T
|+ 7 gy T 6D CEVETT &) o E

Velocity and acceleration solutions will be likewise obtained from (1.16), (1.17)
and (1.25).

Formal solutions of displacement potential in the original space are directly
written in the form of inverse transformation ;
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gxz6=L"-F'g(¢zp)
= Scﬂm 1)1[‘ - S & zp) e "Exdf] dp

O”] e—joo
¢zt =L F'Q (& 2z p) (1.27)
1 ctjoo 1
e WL 7 I

Likewise, formal solutions of displacement and velocity in the original space are
written by

G (€ 20) e Pdt] ap.

li

{ ux 2, =L"'-F'uzp 1.28)
wix 2.8 =L F' @&z p .
and
{ i(x, 28 =L"F* (pu (& z p)) (1.29)
cwirz )= L - F 1 (pw ¢, z p)) o

1. 7 Evaluation of the inverse transformations

There will be three ways to evaluate these double inverse transformations.
(1) One method is to perform Fourier inversion first, and then do Laplace
inversion. This will correspond to Lapwood’s method!®, since integral presen-
tation of the periodic wave solution will correspond to the inverse Fourier trans-
formation, and operation of pulse forming will correspond to the inverse Laplace
transformation. (2) Another method is to convert Fourier inversion integral to
the form of Laplace transformation integral. This will be a logical way of
Cagniard’s method®. (3) Another method is to change the order of integra-
tion ; first perform Laplace inversion and then do Fourier inversion. This may
be a logical way of Takeuchi’s method?”.

Separation of function of parameter

Integrands of (1,27), (1.28) are function of p and & However, functions
of parameter p are separated by introducing a proper conversion of parameter,
& = 2p. This makes Laplace inversion formula available. When parameter & is
converted by & = 4p, (1.27) and (1.28) become

1 o3 (0'(2 +4V ) _ . G
et =1 [ gy T o)
/ 1.30)
. 1
T R - ‘ o~
0580 = 1 o || g T ]
and
1 4% | il Vl2 ) z Axty. 1
ulx, 2z t)=L" [l/ - S_md/l l TZ)S “ Fo(—i) e PNV D)
OMI/A? 2 - )
— b f = ]/1 il —b(ikxﬂ/xwvs? 2)
#H 32 J (1.31)



w (28 + 55) s
w(x 2 b= L_I[Vlon- S‘mdx{**FL Fe(— 1//12 Y
24 ]/12—}— Vit ” (M) -—p(zAx+ﬁ/¢\2+ 2) }

T J
P& 0)=p P =pt-a 08+ 1, )=y 2+ 1521/124”1}5- . L3

It is seen that the integrands of these solutions contain function of p with
forms of

iy =

» Fp e? for potential solution
FQp et for displacement solution
Pr (A p) e ?* for velocity solution.

When the f (4 p) takes such a form that the final integrand does not contain
a function of p except the exponential term, the Laplace inversion results in a
d-function. Integration of a function which involves d-function does not require
integral computation. Therefore, if we select either potential solution or displace-
ment solution or velocity solution according to the form of surface force, we
can lead the integral to a closed form.

Surface force

By now the surface force has been kept in a general form. Let us give
various forms to it. When the surface force f(x, f) is given by a product of a
spacial function of %, fi (%), and a time function £ () : i. e.

B

fa=7f-1E , (1.33)
Table I Concentrated force
- schl«:lc-uem T”:DEM?ONENT L=F Teans rorm
YPE e _ —
AG) f(b f, f, (0 fsp=fs) K
t<o o
x50 ©
A I w5 oo £=0 oo ” Sex) F(e) |
t yo
§ (x) S@) O 0 x o Yy
t<06 ©
Al e t>o 1 i G TA—
S(t) — +
t<o o
o<ttt | _pt
All ! tyt o ! ol —PL(/—CP )
S(t) -S¢-t) 5 T
t<o o Pad
ATV " o<t gt " /
pre
0 &




Table II Spacial force

Type \jl(l) ch(t) j'.(i) fz(f) _r(gvP)= }—.LY) 5:([,)
-adx o] ‘
B1 ~adxca % $) 8(t) Zomig) | _ émtae-;).pa
; ——L)g e
a<x o] g v "
JIAPA —cAp
t e 1 g
BI " S(t) ) St} Lt
- -
‘ zamige) Lo o)
23
BT i SH- Si-T) u T 3 ""l"{i o .
=,e_,.L._(/__ef’ )
° 1 cAp?
t<o o St | 24ntze) |
BV “ _df [ 5 per
oct e _ e g
o £ (Aplpro)

the Laplace-Fourier transforms of various surface forces are obtained as shown
in Tables I and II. Table I shows concentrated force at the origin and Table
11 shows spacial force.

From the above tables, we can select a type of solution which results in a
closed form ; displacement solution for Al type surface force, velocity solution
for ATI, AIIl and BI types, and acceleration solution for BII and BIII types.
ATV and BIV types will not have suitable solution. Moreover we can see that
the displacement solution for Al type is equal to the velocity solution for AII
type, and the velocity solution for BI type is equal to the acceleration solution
for BII type. This means that the difference of the d-function type and the
step-function type of the surface force is not the essential difference for the
generation of the elastic waves. The difference between a concentrated force

; ; : i 1 :
and a spacial force is essential because of additional factor —=~ for the spacial
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force.

In the following sections, we perform the evaluations for the AI, AIIL
type forces and for the BI, BII type forces.

Final evaluation for a concentrated force at the origin

Let us make the final evaluation for the concentrated force at the origin.
We take the displacement solution for the AI type force. This solution is equal
to the velocity solution for the AII type.

Laplace-Fourier transform of the Al type force is, from the above Table T,

fEp=1 (1.34)
By putting (1.34) into (1.81) (1.32), we get the displacement solution ;
uix, 2, {) =L"117£2—n_= S_w{ iGy (D) e P+ iG, (D) e*pm} di (1.35
il.

w2 ) =L 2| {G3 W e + G, () e"’"} di (1.36)

Vo




where
Call= g < oy}
il = FB&) /o I}ﬁ Vs, (1.37)
Gl = — g @+ VYL
G, = - Flw r i+ VlF)
F(A)=,a[(2,iz+-vlsz L LR T
(1.39)

l z]x+1//12+~V2

G, () and G, (1) are odd functions of 2 and G; (1), G,(4) and a part of expo-
nential term are even functions of A  Also we have ¢ ™% = cos pix — i sin
pix. Therefore, integration from the negative infinity to the positive infinity
with respect to 4, becomes a real or imaginary part of the integration from zero
to the positive infinity,

ul g =L~y 2 L g‘“fcl D e+ Gy (D e*w} i

(1.40)
wlx, 2 1) =L 1/ 2 R”S {Gd e 4+ G (A e”f’“’} di

Unless we change the range of integration, we must take into account the com-

plicated behavior on Riemman surface. Now we change the order of integration.

Performing Laplace inverse transformation, we get

winz )=~/ 2 L TGk —5) + G ot~ ) @

. (1.41)
wiez =y 2 R{ (GWIE—7)+GCWot—7)) d
4

Because argument of d-function involves 7y and 7, which are function of 4, we
change the integration parameter 4 to 7. Thus we get

+§ Gb =) 9ar,)
"1
dert | Glb aft—r)-Jh-de.)

L1

l ulhz g =~ 25| G ott—r) 22

l w, zf) = I/%R{ SL Gs(A) 6(f~71)g—:

where

'm—: L I—ix-f——*—————zr }
Ory,, 224221 I/Tz__ x + 2
Vp s
(1.43)
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N 2 B ¥ |
]A— x2+22 { zxr+z[/r Vp,sz J

L and 7. are the integration path on the 7-plane corresponding to the positive
real axis on the A-plane.
The transformation from the A-plane to v-plane is well described in Garvin’s

paper® .
A- P/ane T-plane
3
t y\/u ‘\ ,/
P Na
f ;Vs o ‘\ /
[ S ’
(A s\*\ ‘ /
A B . \ A’
" N LR
\\ D’ N
D 2 { N _‘*\Q \ 2570
ey . / \\
~t! A 2 Z/VF ) ‘\"‘
= / Xy
c /

Fig. 2

Imaginary axis of the A-plane is transformed to the dotted line on the t-plane,
on which are a pole and branch points of the integrand. The positive real
axis of the A-plane is transformed to the line A’B’ on the v-plane. Therefore,
path £ is the line A’B’.

Since £ is a real time, we have to add another path on the real axis of
the -plane. We add path B'C'D’A” on the r-plane, as shown in Fig. 2, form-
ing a closed path within which there are neither pole nor singular points.
Corresponding path BCDA on the A-plane is also shown in Fig. 2, where DA
is on the imaginary axis of A-plane. Then we can evaluate the integral (1.42)
by Cauchy’s theorem ;

b,

The integral on the segment B/C’ vanishes because of large value of c—large
value of 4 and G (4) o

imaginary. Also G, () and G, () become purely imaginary, while G; (1) and
G, (4), functions of A% become real. Therefore, there are no imaginary part
in the integrand of # (x, 2, #), and also no real part in the integrand of w (x, z, £).
Thus the integration on the path D’A’ vanishes. Finally we get

(1.44)

SA/B/ SB/C/ SC/D/ SDIA

On the segment D’A’, 1 and fgi become purely

§D1C, (1.45)

SAIB/ SC'D,
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Because of ¢ (£ — 7) function, in which both f and 7 are real on the segment of
path, D’C’, we get the final expression for the displacement solution,

.
wmay == 2 LGOS+ A ]
1 =71 2 t=T2
, (1.46)
winz=y2 R[GW A 16wl ]
r w 671 t=T71 672 f=T2

T, > sz o Zz/Vp, Ty > 1/x2 + Zz/Vs

where G; (1) and g:i are given in (1.37) and (1.43).

These are the solutions in the subsurface. In the special cases they are
simplified as follows.

(i) Solutions on the surface are obtained by putting A and % to
(1.47)

(ii) Solutions on the vertical axis are obtained by putting 2 and % to

Q= ]/X', i V]:2“ 2
7 (1.48)
N e
and

[ g <2 22
A= z ]/T —T/pz,s
or 1 T (1.49)
or ~ z g 2

\ ]/T sz,s

Final evaluation for a spacial force

We evaluate the velocity solution for the BI type force. This solution is
equal to the acceleration solution for BII type. The Laplace-Fourier transform
of the BI type force is, from the Table II,

_ ei)\pa — —iApa

Fp = i (1.50)
Velocity solution is obtained by putting (1.50) into (1.29)
1 o« —pr1 —pre —prs —pra
it (%,2,7) =L’1]-7§rs_wd/l{Gl(x) e =G e TG e -G e’ }
(1.51)
1 S . —pr1 . —pre . —-prs . —pra
b (x,2,1) =L—1V2n§_mdx{zGawe G e T G e P —iG (e }



where
T =i x+a +1/,{2 V’* 5
T, = A (x — a) +1/22 5
{1.52
ﬁ =+ a) + ]/,z~ . (1.52)
(= ilr—a) +]/12 Vﬁ_z
(6.0 - — s i)
G, (D) = Fl(/l 21/;12 Z,l/xg_*_* |
G )=+ Flw (20 + 1/12 (1.53)
[ G =+ 2 ;/zw

We follow the same procedure of evaluation described in the preceding
section ; change the integration range, change the order of integration and con-
vert A-plane to 7-plane. Then, we finally get the velocity solution for the spacial
force,

B | PN 01 .. 00 )
iwmat =y 2R RA\G2 . Orl LT G Gy
2 - 04 | 02 _ A }

xZ t I/ Im 671[-- Ga(x)afgﬁam +G4(X)873‘t=73 4(1)61_4 -

(1.54)

where G; (1) and 7; are given in (1.52) and (1.53).

The first and second terms are contributions from a dilatational wave
component, and the third and fourth terms are contributions from an equi-
voluminal wave component. These terms will reveal the effect of pattern shooting
for the reduction of surface waves, when numerical computation will be made.
Solutions in the special cases will be easily obtained in a similar way of the
preceding section.

II. Buried Line Source Problem

II. 1 Introduction

Propagation of a transient elastic wave generated by an internal source in
a semi-infinite elastic medium has been studied by many investigators ; Nakano'®,
Sakai®”, Lapwood'®, Takeuchi and Kabayashi®®, Dix* and Garvin®. The exact
solution at the surface of a medium is already presented and also mechanism of
generation of Rayleigh wave is fully established.

In this chapter, mathematical expression for solving the problem is re-
written in a simple form by the methcd of integral transformation. By this
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expression, selection of the source function and Cagniard’s technique of inverse
transformation will be easily -understood. A comparison of this method and
other methods is briefly discussed in the last section II. 4.

II. 2 Formal solutions

Let us take x-y axes on the surface of the elastic medium and z-axis ver-
tically downward into the medium. A line source is placed in a medium at
z=f, x=0. We assume the motion of an elastic medium is two dimensional.
Then Laplace-Fourier transformed wave equations are, from (1.7)

o

z
Fig. 3
d? —
A —@+mWmF=0
2 (2.1)
ij-@+wwa=o

Laplace-Fourier transformed boundary conditions to be satisfied at the surface
z=0, are

{ (Pad,_g= — X8 + (A + 22) B + 2i06f. = 0

2 o = a7 2.2)
Lsz]z:O = p ('— 21$¢5 2= ‘[)zz T Eﬂﬂb) =0 . (
Solutions of wave equations (2.1) consist of a general solution and a

particular solution which presents a source function. Taking a dilatational line
source, we have, in the transformed space,

Bo (€, 2,0) = Ay (p, &) ¢ "EFEC=D (2.3)

where A, (£, p) will be determined later by a source condition.
Thus, we have solutions of the wave equations (2.1),

I 5 = 50 + 51 =
l5= & s
where
gr=AE D) e VERTRE 2 )
Ji= B p) o T '
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A&, p) and B (€, p) are determined by putting (2.4) (2.5) into (2.2) ;

A D)= — Ay ¢ TS A VEFES 00 Ry E T

F, p) 5
2.6
— vVE2 2 . TR e B
B p) = 7%}‘!}5— & FTEL 00080 + k) BVEERE)
where
FEp)=pl@8+ B —482VE+ PVE TR} . (2.7)
Formal potential solutions in the Laplace-Fourier transformed space are
FE 20 =AM e TV
— A, (& p) e_‘/52+h2(f+2)
—AED L VE T RVETE) o E
(2.8)
7 (& _ A D) 2 4 B GEVET TG o= (VETE £+ VETR 2)
P& zp) = FE p) p{2008 + B EVEE LT HE) e .
(2.9)
Thus, formal potential solutions in the original space (x, z, f) are
g zt)=L"-F1 {g(2)p)
f d 3 (2.10)

lomzt)=L"-F1{FE 2] ,

where L™ and F~! denote the operation of Laplace inversion integral and Fourier
inversion integral respectively,

cjoo
Li= 1. S o dp,
27y do—jon
e (2.11)
Fi= S S e dx

Formal displacement solutions in the Laplace-Fourier transformed space
are obtained from the relations

(&= —if + ¢, gim o
\ @ = &, + itG 218

Thus, we have
7= —iA, exp {(—(f—2) Ve + hY))
+ @A exp{— (F+2VE+RY)])

€4,
F&p)
_ Aw ST [ o(og? N cer /BT
FEp) VE + B [ 228" + k) i€VE + BP)

exp { —fVE+ 12} exp { — 2V € + k2 )
=Ty + iy + %y + @y (2.13)

+ (SEVE L+ RVE TR ) exp{— (F+ 2 VE F P}
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W=VE+ A exp—(f—2)VE+ It}
FVE+ R Ayexp{— (f+2)VE T+ R}

F R VIR SVE TR VE 4 F) exp (— (f+ 2 VETF)
@ﬂp) §{2028 + B)VE £ B) exp (—fVE ¥ 1} exp {—2VE + I}
=Wy + Wy + Wy + Wy . (2.14)

#, and W, are components of the source wave. @, iy, Wy, Wy are the dila-
tational components derived from @,. #, and @, are the equi-voluminal com-
ponents derived from ¢,. @y, and @y, are interpreted as contributions from the
perfect image source, and #;;, iy, are interpreted as the correction to the perfect
image source reflection due to the conversion from dilatational wave to equi-
voluminal wave at the surface. Formal displacement solutions in the original

space are
{ wix z t)=L-F1{@(E zp)) (2.15)

wxz t)=L"'-F ' {wE zp)}

II. 3 Evaluation of the inverse transformations

Separation of a function of parameter p
We follow the same steps for the evaluation of the inverse transformation
as that of the surface force problem. We separate a function of p in the inte-
grand of the inverse transformation integral by converting £ to i4p. Then we
get,
[ w28 =1+ uyp+ w + u,

L wix, 2, 8) = wy + wio + wy + w, -
(4, = L~ Vlm [ di(—itpt Auexp(—pr)
tyy = L 1/- Smmd/l {idp* A, exp (—pry) )
= L ]/97_ [~ ar F‘?"” gy 1 + +0r ;/ 2+ —pr))
w=1 L {7 ai- “b"‘;} 0y I 1/ 2 Lot 122 \exp(—p75)}

(2.27)

wo= L T aeyr e L A e - pe)

1 [ee)
Wiy = L_l‘ 1/ ‘)TL‘S d] {p2]/1“ Vj,“’ AO €xp (— pT?) }

1 \ { At

=Lt 1’”21/12 stl/w A7+ el o)

o PAPD

+~ 2 ) exp (—pri)}
(2.18)

sz :L_l']/Qn: SG_OOO { ]76 121/22
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; ! ’
FUP=pFW = mt [ (28 + 35 1 =48 2y 2 4
(2.19)
o lez (f — 2) + idx

]/ = (4 2) -+ die (2.20)

]/22-4— Vi f+]/12+~2~z+wc
We can see the function of parameter p in the integrand has the form of

PAGLD GR e . (2.21)

Therefore the integral will go to a closed form when A, (4, p) takes a form of
F /P, e ?" being the only function of p in the integrand. In the next section,
let us see forms of source functions.

Source function

It will be easily shown that a particular solution K, the modified Bessel
function, derived from the Laplace transformed wave equation has the best suit
form among many particular solutions. This solution, with a factor 1/p?, leads
the inverse transformation integral to a closed form. A particular solution of the
Laplace transformed equation

(V—H)0(x 2 p) =0 (2.22)

Ov=a D)K., (hV 2 + (f— 2)*] (2.23)

where @, (p) is a arbitrary function of p. Fourier transform of this solution is

FE 2 p) = '/’; —i/—%‘;(i:)gz e VETR D p 50, (2.24)

When we choose 1/p for @, (p), and covert £ to 4p, we get a expression for A4,
of the source function (2.3),

= g 1 i 1 1

A T G

0 l/g p VE+ & 2 P ‘/,{2.)&1/17, {2.25)
»

The source function in the original space is obtained by performing inverse
Laplace transformation to (2.23),

fo (x, 2, )= [0 for t<7/V,

2.26
Lcosh™ #/#/V, for t>7|V, a8,

where
r=12+(f—2)?

The displacement #,- in the outgoing direction of this source wave is
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. I R A
Y0 = Ty = T TRV (2.27)
ji5)
e (2.27)

where v = i/t,, I, = #/V,. The form of #,, is shown in Fig. 4.

Uor

Fig. 4. Displacement wave form of the source wave

This source function is the same one as used by Lapwood"® and Garvin?® .
Final evaluation

Since we gave a form to a source function, we now perform the final
evaluation. By putting A, into (2.17) (2.18), we get the expression for the dis-
placement solution,

wlnz ) =L " di—i6u () exp(—pr)

+ Gy (4) exp (— pry)

+ 4Gy (2) exp (— pr,)

—1G, (2) exp (— pry) } (2.28)
wlx,z t)=L"- é— Sc:odl {+ exp (— pry)

+ exp (— p7y)

= Ga (1) exp (_ 1772)
— Gy () exp (— pry) } (2.29)
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where
Go () = ‘/‘71
w+mf
G\ () = ( B /L
— 1 2.30
G2 (/1) = ( (JIZ Vsz ) ]/’22 El '1}82 - ( )
A 1 1
IV N
2
2 1
G/(h) = F—f» LRSI
1 3
—ye+ L -2+
|/ i v, (f—2) +iix
=P s po (2 +ilx (2.31)
»
1 1 .
= e+ nzf+/ﬂ+ a2l

.mwﬂw+;ﬂ—wﬁ+$fﬁ+%J.@m

We follow the same procedure used in the surface force problem for the further
evaluation. The integration with A from the negative infinity to the positive
infinity is simplified to

J w=L"1-1, S: -G e di
lw:ﬁ%&wa[“m

because Gy, G, and G, are odd, and G, G, are even functions of 4 Then

we change the order of integration and perform the inverse Laplace transforma-
tion first ;

==L G o—7d

w=&§Gma@—nﬂ

0

We convert this integration in the A-plane into the 7-plane because of 8 (£ — )
function, and we have
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By the same argument made in the surface force problem, this integration goes
to the integration along the real axis of the T-plane.

- P/aue T~ /;/afne /
1

A
¢ ‘/Ys
A

A B

D
e

“if

il
l/\/,1

Thus we get the final expression for the displacement in the original space,

7 —c 9t oA }
u (x,Z, i) P I, lGO (4 )671 - G, (1)6121'—%2 G, (X>0Tgli-m + Gy (1)673] -
02 o2 .. 0k |
w(xz20)= aflrtau aT”——o + G (3)672}%{2 4 (j)armlmrn

> 2

SVEF =2 VA EFD L g
2 b

where
L (PSR S
ory,. 2+ (fFz? | ¥ /= T
122
Ve
_ 1 I - 1 A+ (fx2? |
61',, o i (2.34)
R
]//12 V“ f+1/A2 2 2+ idx .

Numerical computation for this formula will bring us exact form of transient
elastic wave at every point in the medium. However the computation of 984/07,
is complicated.

The first term of (2.33) is the source wave, and the second term represents
the perfect image source reflection. The third term represents the wave which
compensates the conversion from dilatational wave to equi-voluminal wave at the
surface, and is called a correction term to the perfect image source reflection by
Dix®. The fourth term is the equi-voluminal wave generated at the surface.
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The wave front of this wave has been treated by Cagniard®. According to

him, the wave front is interpreted as follows. Putting 4 = — i/, and
P sin 0,  sin 6,
Vp Vs '

073/01 is expressed by &, and #,, becoming

o,
04

o
2o,
&
=)

= —1¢(ftan 0, + z tan 0, — %)

Wave front of the first break is obtained at the time where 07,/04 = 0.
We denoted this time 7, as ;5. Then we get

R] 4 RZ,

0
v, v (2.36)

Typ =

where
Ry = fleos 6, R, = z/cos 0,

This minimum time corresponds to the path of Snell's law as is seen in Fig. 6.

.ffm.e. \‘:/'Ztl.'n\e1

9.!92 Rz
t

(x,2}

Fig. 6

Wave fronts of #y, 5. 2y, and #, are illustrated in Fig. 7.

1
|
)
|
|
[
1
|
t

(Source)§ ;.‘ \P/

Fig. 7 Wav front of each term
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The solution at the surface becomes slightly simple form. Because 7;, 7, and
T3 become the same each other as is seen from (2.31),

mrrr ,//12+ Vl,,z f+idx (2.37)
and
oa _ v f(_. . fr
or 4 | Zx+1/1,2_kfz+x’_}
Vi (2,38)
S SR O S
T+ &y { l$+l/r'”—~lj
where
[T,=T/I/fz+x2/Vp (2.39)
lé*=x/f -
and
Y T [ 4. 2+ )
P pae 1TV T |
i (2.40)
= FVITE {—dr + 1V —1}

The first term and the second term of the horizontal displacement are cancelled
out. However the first and the second term of the vertical displacement are
additive. Thus we get from (2.33),

wlro =L [(GW-GW) 9 ]
6/{ (2.41)
w o) =R[{2+GCN—-CD} ,=._J

These formula (2.41) (2.40) (2.39) are the same ones obtained by Garvin®, who
presented numerical examples of these results and explained the generation of
Rayleigh wave and surface-S wave.

II. 4 Remarks on other methods

The differences of the method developed in this paper to other methods
were briefly mentioned in 17, Chapter I. The so-called method of integral
representation of the solution, used by many investigators since Lamb, will cor-
respond to the inverse transformation of the methcd of integral transformation.
The integration with respect to { in Lapwood’s paper'® will correspond to the
inverse Fourier transformation, and the integration with respect to @ will cor-
respond to the inverse Laplace transformation in this paper.

A simple mathematical formulation obtained in this paper is a result of
treating quantities in the transformed space, where integral representation is no
longer required. The greater difference of this methcd to the method of integral
representation will be the use of proper source function and the proper path of



integration, which lead the solution to the exact solution. Both Cagniard’s
method and this method select a suitable path of integration in the transformed
plane, 7-plane, so that exact solution is obtained. While other methods stuck
to the A-plane, and are forced to make approximate evaluation using pole integral
and branch line integral with steepest decent method or stationary phase method
(cf: Honda and Nakamura'®). However, there is a path in the A-plane which
leads the solution to an exact form, when the source function is properly selected,
as shown in Fig. 2, Chapter I and Fig. 5, Chapter II. This path does not
come close to Rayleigh pole and the branch points except special case of solution
at the surface. Since the path of integration is a little off these singular points,
the contributions from them will not appear as separated terms. They result in
an amplitude variation with time. The amount of contributions from pole and
branch points will be estimated by the distance between the path and the singu-
lar points and the ‘‘topography’ of the integrand in the A-plane. Dix" has
attempted to figure out this situation.

Takeuchi and Kobayashi*® have replaced exponential term in the integral
representation by 6-function. This may correspond to the whole process of Laplace
transformation, selection of source function and the inverse Laplace transforma-
tion. However, there is some uncertainty concerning the form of the source
function used.

The difference between Cagniard’s method and this method is not essential.
They are equivalent. The only difference is that the mathematical technique
developed by Cagniard is naturally introduced. However, when his methed is
understood as the method of dual integral transformation, this will open another
field of application. An example will be seen in Chapter TV, for diffraction
problem.

III. Reflection and Refraction of an Acoustic
Pressure Pulse at a Liquid-liquid Interface

III. 1 Introduction

Let us apply the method of integral transformation to reflection and re-
fraction phenomena. Cagniard® has made extensive and rigorous treatment for
reflection and refraction of transient elastic wave at the solid-solid interface in the
three dimensional case. His results, wave fronts of many waves, which are
deduced from exact solutions, have given many lights on the mechanism of re-
flection and refraction of a transient pulse which has a curved wave front. By
using his method, Spencer*® has studied the mechanism of reflection at the
liquid-solid interface under the source point. However, wave forms of reflected
and refracted waves have not yet obtained due to difficulties of three-dimensional
treatment.

On the other hand, Honda and Nakamura'” and Takeuchi and Kobayashi?”
have studied this problem for the SH-pulse and have presented wave forms.
However, because of their method used, mechanism of reflection and refraction
is not fully elucidated.

In order to clear up the basic picture of reflection and refraction phenom-
ena of a transient wave with a curved wave front, the case of liquid-liquid
interface is taken and studied in two dimensions in this chapter.
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Wave forms of reflection and refraction, which are numerically computed
from exact solutions obtained in III. 3, are illustrated in III. 4. And variation
of reflection coefficient with angle of incidence is also illustrated in III. 4.
Mechanism of reflection and refraction is described in detail in IIL. 4.

III. 2 Formal solutions

Let us consider the system of liquid-liquid interface shown in Fig. 8.
The x-y axes are taken on the interface and the z-axis is directed vertically
upward. The density, velocity of acoustic wave and displacement potential are
denoted by p, V and ¢ respectively. The suffixes 1 and 2 refer to the upper
medium and the lower one respectively.

z

f (Source)

Fig. 8

The line source is located in the upper medium at z = f, x = 0. Then,
Laplace-Fourier transformed wave equations are

.
AP (s p) 6= 0

dz? o
d'g, , N T y
= E R F=0
where
ht=pveE hit = PV, . (3.2)

The Laplace-Fourier transformed boundary conditions to be satisfied at the interface
z =0 are, according to continuities of stress and displacement,

'01551=02V72
09, _ 03, (3.3)
9z 6z

When the displacement potential of the source function is taken as
. - VETRE (f—
Bz, p)= Ay g~ for =1 (3.4)

in the Laplace-Fourier transformed space, general solutions of wave equation
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(3.1) become

I 51 (€, z,p) = 50 + A e Virtht z
| B, 2 p) = B otYEThY s .

Coefficients A and B are determined by putting (3.5) into (3.3),

20,VE + b
pVE + bt + pVE + b’

20,VE + h? A, ot VEFE S
0

Vg e — Vet
A=—Aoe +h1f+ Ao +hmt f

B= == — T
PJ/SZ + 1222 + 021/52 -+ hIZ
(3.6)
Thus, the displacement potentials in the transformed space become
[51:50‘{‘510‘*‘511 3.7)
l 52 = 52 &
where
gl &5 = iy &~ VETRE (f+2)
IR 4 LT L L
BT o VE I+ 0V E + T (3.8)
B 20,V £ + hle;:AA o~ VEFRTF 4 VTR 2
T oo VE + ko VE + R T

B, represents the wave from the perfect image source. @, represents the wave
which compensates the perfect image source reflection for the energy transmission
into the lower medium, and is called correction term by Dix®. @, represents the
transmitted wave into the lower medium.

The differential pressure associated with acoustic wave is expressed by

6?2 *
dp=—p or @ (3.9)

because @ is the displacement potential. Therefore, the formal solutions of the
differential pressure in the original space (x, z, #) are given by

*  Trom the definition of differential pressure dp,

1 3% o
B o — - 2 — e —
dp kO kvg=—k i

where £: bulk modulus, ©: dilatation.
One may regard @, as a velocity potential and take a differential pressure by the

relation of dp = — p a{;’i“ . The reason why #, is not taken as a velocity potential is

" =1 | s
that the differential pressure associated with the source function #, = cosh™  #/#/V is not
physical. Because the particle velocity given by this velocity potential approaches to 1/#
with time, meaning constant particle velocity.
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0° -
dp, = — o0, o L™ - F' (g,
P (3.10)
dp, = — 0, oL L. F! razj S
where L™, F~! denote the operation of inverse transformation ;
o il ctioo bt
Lt= 2 chime dp.
(3.11)

1 oo e
L iy #r e
Pusoe S_me d-
III. 3 Evaluation of the inverse transformation

First, we introduce the same source function as is used in the preceding
chapters ;

IO e V/Vl

Fo = lcosh™ iV, i t> vV, LR
r=vVe+ (f—2° ,
and (3.13)

_fmw 1 1
A"‘l/ff p VE L B2

Then we convert the parameter € to 4p, € = p. In order to lead the integra-
tion of (3.10) to a closed form, the inverse transformation is applied to o *?;Q; s
and differential pressure solution is obtained from o g?— by the numerical differ-

entiation.
The evaluation of @, the perfect image source reflection, is directly

obtained and becomes
Bro = l - , or
cosh t/‘f’/Vl A V/Vl
¥ =Va + (f + 2)?

(3.14}

because @, has the same form with the source function.
The evaluations of ¢,, and %, are made as follows. From (3.10) (3.11)
and (3.13), we get

6 1 o
01 _._;5;1 = [5bs 5 SMDG (A) exp (— pry) di (3.15)
6 il oo
) 6‘2;2 =L7 S_mG () exp (—pr,) di (3.16)
where
Gl= 201 P
YRy, o/ + .- (3.17)



o=+ g F+a) + ik
1

) . (3.18)
Ty = /&24" .V]:er"‘l/jz’*‘ I;;rZ‘i‘l.jx 3

Since the integrand G (4) and a part of exponential term are the even functions
of 4, and since

¢ M = cos Ipx — i sin Apx

the domain of integration of 4 is changed into from 0 to infinity ;

(o O~ 1RG0 e (= pe) i
(3.19)

a o)
l 0; —gif =L Ry So G (1) exp (— pr2) dA

Then, changing the order of integration of Laplace inversion and Fourier inver-
sion, we have

o1 6;’;1 =R G au—r) i
0
y . (3.20)
b=y =R GO dt~r) ar

Because of d-function, involving 7 as a function of 4, we change the integration
parameter 4 to . Thus we get

0g 8 01
01 0—;1 = R. SL1G (A 8(t—ry) or, dr,
oy o1 (3.21)
o SR . Sp
. 02 at - Rﬂ SL2G <Z) 0 (i TZ) 02_2 dT2 El

where 7, and 1, are the integration path on the 7-plane corresponding to the
path on the A-plane. And 4 and #2/67, are given from (3.18) by

-1 Iz _ 2+ (f+at )
4 24+ (F+2 | zxr+(f+z)'/z-1z v |
04 _ 1 (py . Utan ) (3.22)
or, C B+ (frar L2 Jer— FEGET )
1 Vl

The expression of 04/07, as a function of 7, is very complicated.

Let us see the path of integration on both A-plane and 7,-plane. The trans-
formation of A-plane to 7,-plane is done in the similar way as described in the
preceding chapters. Here we take the case V, > V.. Referring to Fig. 9, the
positive axis of A-plane is transformed to the line A’ B’ in the 7,-plane. The
imaginary axis of A-plane is transformed to the dotted line in the 7;-plane. This
dotted line folds back at the point 7; = V/(f + 2)? + £*/V,, D', where 07,/04 = 0.
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A- Pla'ne T- plame

{

L%,

-1 A

~ !
|

This point is the pole of #4/87,. Branch points on the imaginary axis of A-plane,

A==1 I}v and 1= =% ¢ é , are transformed on the real axis of v-plane at
1 2

T=Fx/Viand r = F Iy;z + ]/*I;l — Vl22 (f+2). In order to evaluate

the integration of (3.21), we add, on the 7-plane, path B’ C” at a great distance,
and path C" A’ on the real positive axis, avoiding pole and branch points with
small indentation on the upper side. These paths form a closed path within
which there are neither pole nor branch points. Then we get from Cauchy's
theorem

SA’B/ —SB’C/_SC/A/

The integration on the path B’ C’ vanishes, because of large value of A and
G (4) o< 1/A. Thus, integration required is for the path on the real axis. How-
ever, on the real axis of vi-plane, there are branch points and a pole. Let us
see in detail the configuration of the path on the A-plane,

D . "
-4, A P D
~i [/‘/1 —i'/v, -i Vvl
v A = aint M mt M
9 < A s 6 = ain >y 0 > awm v

Fig. 10



The path B’ C’ in the 7y-plane corresponds to the path BC in the 2-plane.
The transformation of the path C’ A’ in the «,-plane to the path CA in the
J-plane depends upon the case, and is shown in Fig. 10. This transformation is
obtained as follows. From (3.22), it is seen that A becomes purely imaginary
when 7, < Va' + (f + 2)}/Vi. Let us denote this point D and D’ on the
Aplane and 7,-plane respectively. Thus the path DA’ on the real axis of 7;-
plane corresponds to the path DA, a portion of imaginary axis of A-plane. The
path CD is on the complex-plane of 4. The value of 4 at the point D is
x i
A= —1 . 5 .
(f+ 2)*+ & Vi
and is rewritten by
., sin 0

A= —1 V.
where 0 is the angle shown in Fig. 11.

Z

(Source) §

(1,2)
l?qeziv:‘ng point

=,

ey

Ssource

Fig. 11

Therefore, the location of the point D on the imaginary axis is above, at or
below of the branch point, — ¢ 11/*, according to the condition # = sin™* V,/V..
The point D is always above the other branch point, — ;.1

Now, let us evaluate the integration on the path CDA on the A-plane.

(i) The case of 8 < sin™! V3V,
The 1ntegral on the path DA vanishes, because of purely imaginary value of

(X)* *: Therefore, the contribution to the results is made only from the

path C’ D’ becoming

G
Lo = R 005,

) oo VET T (.29
v

(ii) The case of 8§ > sin™* V,/V,
On the path DA, the contribution from the segment of path 1< —1i

1 !
vanishes.

V.

. l-_ S 0

1
V. Vi’
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because of complex value of G {2) in this interval. Therefore the contribution
to the results is made from this segment and C'D’, becoming,

R G0 gt - (3.24)
1 x 1 1 N
Ly, +f 2 A
Thus, the final expression is given by
06, - f 0d, 01, 01, ] 3
0 ot = 0, l T 4 o1 + ot J (3..45)
and
O 04 1 .
& Of - RP l G (D a‘l' t=71! (326)
o 5 e 1/. 1.2. - 12 (f+2 for 0>sin ViV,
Vl ) V2
sz Vf + 27 for 0 <sin™' V,/V,

where G (1) and 04/07,, are given in (3.17) and (3.22) : @, and @, are given in
(3.12) and (3,14) respectively.

So far we have investigated the case V, > V,. However, the case V, < V,
is more easily treated, because the branch point of V, does not lie on the real
axis of r-plane. The results are the same as that obtained in (3.25) (3.26) except
the value of 7;. The time of the first break, 7,, is always Vet + (f + 24 Va

for any value of 0.

III. 4 Interpretation and numerical results

(1) Wave front

The wave front of the first break of reflected and refracted waves is ob-
tained from the smallest value of time 7; in (3.26). When a receiving point is
located within the critical angle, i.e. # < sin™ V,/V, as shown in Fig. 12, the
wave fronts of perfect image reflection ¢, and compensation @, arrive at the

2 2
same time, 7; = Vx‘i-{“v(,f +2) . When a receiving point is located outside of
1
the critical angle, i.e. 8 > sin™! V1/V2, the wave front of the compensation arrives
as the first break at the time 7, = - 4 ]/ 12 — —5 (f + 2), and the wave

front of the perfect image reﬂection arrives later at the t1me t=v% + (f + 2)*/ V..
These wave fronts are illustrated in Fig. 12. As is seen on this figure, the wave
front of the compensation is a plane, intersecting the interface with the wave
front of the refracted wave in the lower medium and contacting the perfect
image source reflection wave front at # = ;. This is the wave front called as
the ““Conical wave front’” by Cagniard® in the 3-dimensional case. The arrival
time of the conical wave front is equal to that of minimum time path of geo-
metrical optics.

We have seen that the conical wave is derived from the compensation
term @;;, compensation for the energy transmission into the lower medium.
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(Inlaze)‘f *

Fig. 12 Wave front of each term

Therefore, it will be naturally understocd that the conical wave is always ac-
companied with the refracted wave in the lower medium and it should form a
wave front ahead of the reflection wave front, when the refracted wave in the
lower medium proceeds the direct wave front along the interface. From this
wave front view-point, the development of conical wave front will be understood
as a part of the first break wave front associated with the refracted wave in the
lower medium. Therefore, we can expect enough energy for the conical wave.
Let us see the exact wave forms in the next paragraph.

(ii) Wave forms of reflected and refracted waves

For the numerical computation, the expressions of g 6;;“ and 0, ag;‘ >
(3.26), are rewritten in the form of
010 01 1 ’
s N S -
P oy 70 V' E—1 for ‘& =1 (3-”).
061 0, 2 f . r,/ ] '
R = R. 9 ———————— ! —{ tan 0 + ———— 3.928
1 af [To {]//K‘*“%‘VF}l 1/.;.{2__1]]( )
2
for =/ >1 , 6<0.
v/ >cos(0 —0) , 6> 0,
where
A=(r/*—1)—7/% tan® 0 + 12 —i2tan 0t/ Ve, P —1
cos? 0

B= (et =1~ tant 0+ (V) L — izt 0n /e T (3.0
2

s T = Ty, Ty = W + (f+ 2V,

7, is the local time. Numerical computation is made for # = 0°, 10°, 20°, 30°,
40°, 50°, 60°, 70°, 80°, in the case of oy = 0, and 8. = 40°, (V,/V, = 0.64279).
The differential pressure form is obtained by the numerical differentiation.
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Fig. 13 Pressure form of the source wave
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Fig. 14 Pressure form of #i, + #,; in the upper medium ; § = 0°

8= 10°

T

Fig. 15 0= 10°
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Fig. 16 Pressure form of $; -+ $11 in the upper medium ; 0 = 20°
10 6=30
1lo " 1.2 13
o
Fig. 17 0= 30°
o 9 =40° Critical a‘ng/e

Fig. 18 6 = 40°; critical angle

The wave form of the source wave is illustrated in Fig. 13. Reflected
and refracted wave forms in the upper medium are illustrated in Figs. 14 ~ 22
according to angle § (Fig. 11). These figures show the value of dp X (vo/pr)?
because (7,/p,)? is the common factor for various receiving points. Refracted
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o9 1o il 12 7.3

Fig. 19 Pressure form of ¢y, - $,; in the upper medium ;6 = 50°

™

; 7.2
o9 e fi 3 s

Fig. 20 6 =60°

wave in the lower medium at the interface is also illustrated in Figs. 23 ~ 27,
because @, is equal to the compensation term @, at the interface®.

In these figures, we can see several interesting features of reflection and
refraction phenomena. The wave form of the refracted wave is a sharp spike
with considerable amplitude™, After the first break, the amplitude of disturbance
decays with time and then it increases again to the positive infinity as the time

x

At the interface, it is easily seen from (3.17) and (3.18) that
Ty = = l/lz + Vl‘z F4+idx and pfy; = 0252
1
Takeuchi’s result?” on the displacement of SH-pulse differs a little at this point.  His

, g;L in this paper. This difference may be due to

Ak

result is very similar to p

that of source function.
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Fig. 21 Pressure form of $,; -+ %, in the upper medium; 8 = 70

1.0 9=280°

0.1 0.8 0.9 140

Fig. 22 0 = 80°

approaches to 7" = 1. At this time reflected wave front arrives. The phase of
the reflected wave (marked by @ in figures) is the same as that of direct wave,
when receiving point is located within the critical angle.  And, as is well
known, the phase inversion takes place when the receiving point is located far
beyond the critical angle. The phase inverted reflected wave and the positive
phase (marked by B in figures) of large amplitude just ahead of the reflected
wave form the oscillatory wave form. Moreover an additional small oscillation
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Fig. 23 Pressure form of ¢, at z = 0; refracted wave
on the boundary ; 6§ = 10~40°

(marked by © in figures) associated with this phase inversion is seen in the
figures 20, 21 at # = 60° and 70°. Thus, the oscillatory feature of the reflection
seems to be essential to the reflection beyond the critical angle. Therefore,
although it is true that the phase of reflected wave is inversed beyond the critical
angle, what is observed as the reflection will be these wave forms, oscillatory
wave forms”.

The refracted wave in the lower medium at the interface also has the
sharp spike first break beyond the critical angle. There is another phase of
great amplitude (marked by @® in figures) at the time 7, = 1, when the direct
wave front arrives at the receiving point on the interface. This shows the trans-
mission of considerable energy from the direct wave into the lower medium at
this time™. Tt will be natural to think that there is a considerable energy trans-
mission into the lower medium so far as the direct wave hits the interface even
though the point is beyond the critical angle. The energy transmission of this
kind may be a cause of boundary wave.

Just ahead of this phase there is another phase of large amplitude, (marked
by ® in figures) which relates to the phase of large amplitude of reflection.
These phases will be interpreted as follows. When the cylindrical direct wave
front hits the interface, a part of its energy is reflected back and other part is
transmitted into the lower medium, forming a reflection and a refraction wave
front. The medium behind these wave front is disturbed according to the
wave form of source wave. And the energy of these disturbances are supplied

* A part of this oscillatory feature is seen in Takeuchi’s paper?”.
The energy transmission of this kind is already reported by Kawasumi'®. However

there is no particular increase of transmitted energy at the critical angle.

Y
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Fig. 26 Pressure form of ¢, at z=0; § = 70°
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Fig. 27 6 =80°

from every point at the interface which is already hit by the direct wave. These
disturbances in the lower medium propagate with the higher velocity. And the
figures of transmitted wave in the lower medium show the mode of energy
accumulation of these disturbances. Since the wave front of the transmitted
wave in the lower medium does not exceed the direct wave front at the interface
until it reaches the critical angle, the most of the energy is accumulated at the
wave front. However, because of higher velocity of propagation in the lower
medium, the wave front of the transmitted wave gradually exceeds the direct
wave front when it goes over the critical angle. Then a portion of energy,
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which has been accumulated at the wave front begins to exceeds the direct wave
front. This situation is seen in the Fig. 24 at # = 50°. As time goes on, the
exceeded energy is gradually separated ; one forming a first break with sharp spike
and the other accumulating before the direct wave front, as seen in Figs. 25~ 27 at
6 = 60°, 70° 80°. Therefore, the large amplitude before the time =1 1s
due to the disturbances generated at every point of the interface hit hy the
direct wave, and due to the higher velocity of propagation in this lower medium.

The transmitted wave in the lower medium is accompanied by the conical
wave in the upper medium. And the energy of disturbance at and behind the
conical wave front is supplied from the lower medium. Thus the large distur-
bance (marked by ®) of the transmitted wave before the direct wave front is
again transmitted into the upper medium. This re-transmitted disturbance forms
the phase of large amplitude (marked by ®) of the reflection before the time
= 1.
(iii) Reflection ratio

The amplitude ratio of reflection to the direct wave at the time 7’ =1 is
obtained from (3.27) and (3.28) in spite of their infinite values, and is given by

dpyo + dpu1 | _ VA-VB

L= db, L= A—B

where A and B are given in (3.29). This ratio will show the variation of
reflection coefficient with incident angle, the distance factor being cancelled out
as a common factor. Results are illustrated in Fig. 28 for various velocity con-
trast.

0= sin™! (V4 Vy)
102030 40 50 55 60 6% 0 128 I8 775 go

-1.0
Fig. 28 Variation of reflection coefficient R with incident angle 0

: ; Vi :
for various velocity contrast ; v, = sin O
H
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The reflection coefficient increases with angle 6, and reaches unity at the
critical angle. Then it decreases, and becomes negative value, meaning phase
inversion, and approaches to minus unity as & goes to 90°. The point beyond
which the phase inversion takes place is not exactly at the critical angle. It is
located a little off the critical angle.

The increase of reflection coefficient with angle within the critical angle
will be interpreted as a result of accumulation of disturbances which are generated
at the interface by the direct wave and which propagate with the higher velocity
in the lower medium. This picture is in agreement with mechanism described
in the preceding paragraph (ii).

IV. Diffraction of an Acoustic Pressure Pulse by
a Finite Fixed Plane in Liquid

IV. 1 Introduction

Diffracted wave from a fault has been partly used as an useful information
in seismic prospecting. In these two or three years, lots of diffraction-like waves
have been observed on the variable density presentation of the seismic continuous
profile. It is the purpose of this chapter to obtain some characteristics for the
nature of diffraction phenomena.

Since Sommerfeld gave the famous solution for diffraction of an acoustic
wave by a plane screen, many investigators have studied this phenomena. Their
works have been reviewed by Bouwkamp? and summarized in a book by Baker
and Copson”.”

In this chapter, the method of integral transformation is applied to diffrac-
tion of an acoustic pressure pulse with a cylindrical wave front by a finite fixed
plane placed in liquid. Boundary conditions are formulated in IV. 2 and formal
solutions are obtained in IV. 3. The inverse transformation of the formal solu-
tions is evaluated by using convolution formula, which is different from the
method used in the preceding chapters. Thus exact solutions of reflection and
diffraction wave are obtained in IV. 4. Physical interpretations of diffraction
phenomena are made in IV. 5, revealing many interesting features.

IV. 2 Boundary conditions

Let us consider the case where a finite fixed plane is placed in an infinite
liquid medium, and a line source is located on the z-axis. Referring to the
rectangular coordinate in Fig. 29, the fixed plane is placed in x-y plane at
—b<x<aand z= 0, and a line source is located at z=Ff, x = 0. For the
convenience of calculation, the medium is devided into two regions by the plane
atz = 0. The displacement potential, density and velocity are denoted by ¢, 0
and V respectively. The suffixes 0, 1 and 2 refer to the source, region I and
region 1L

If we assume no energy transmission through the fixed plane from region
I to region II, boundary conditions to be satisfied at 2 = 0 and — oo < x <
are expressed by

Recently deHoop? presented a elastodynamic diffraction theory.
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0'¢, _  0'd, 0%g
P oop =P an TP 4 (4.1)
o4 o
9z~ oz =
where
gx 20t =28 (x00- -ula —b; x (4.3)
wla, —b; x)= [0 x>a, x<—Db
P 1
11 o —b<x<a (4.4)
g, (x. 2, 0)= [0 —b<x<aafz=0
: \ @ (x, 2, ©) for other region (4.5)

These expressions of the boundary conditions, outside the fixed plane (z =0,
x > a, x < —b), become,

oy o,

P TP p o
o5, _ 0s, =
0z 0z

and show continuity of stress and displacements. And, at the fixed plane, they
become

2 2
pagjz‘:% a%" , B2=0
ot ot ;
; 4.7
[ g _ 09 _
0z 0z

and show the perfect reflection by a fixed plane, and no energy transmission
through the plane.

Thus the problem of diffraction by a finite plane is reduced to a boundary
value problem at an infinite interface. And the boundary value problem which
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involves unit function in a finite region is solved by the methcd of integral
transformation as is seen in the following sections.

IV. 3 Formal solutions

The Laplace-Fourier transformed wave equations are, as described in 1. 4
of Chapter 1,

[ &

o (& + n? } @€, 2, 5) =0 i=1,2 (4.8)

where h* = p?/V?2  The Laplace-Fourier transform of the boundary conditions
(4.1) (4.5) become

{@@&M=@@&M+%W@@

0%, o ER (4.9)
0z 0z
where
a(p) g€ =F-L(g 21z
N S S —pt ) e, | (4.10)
= s S—mlgo glx, 20 e dtl e dx -

The general solutions of wave equations (4.8) in the transformed space are

(B zp)=AED e EYE L5 2 p)

e 411
| 6, 2, p) = BE. p) gt VETH 2 (4.11)

'dl’ld
Bo(€, 2, p) = Ay (£, p) ¢ HH U2 for zSf . (412

The coefficients A and B are determined by putting (4.11) (4.12) into (4.9);

1 ]
A= _a(p) g
T 1 (4.13)
B=dy e L ) g0
Thus, the displacement potentials in the transformed space become
GiGap) =M e D ) g @) ¢ T
ST 1 P (4.14)
Bl ap)=Aie TP ) ey et

Then the formal solutions of displacement potential in the original space are
directly written down as

& (%, 2 1) = ¢y (x, 2, £) + Brept (%, 2, £) (4.15)
L a) g T } (4.16)

XS

@y (x,2,8) = gy (w2, ) — L' -



where

—VERT 2 |

Gop= L+ F1 ;%wg®e el (4.17)

(
|
gy = L1 - F-1 {Ao € p) o (-2

(4.18)
and L7' and F~' denote the operation of inverse Laplace transformation and
inverse Fourier transformation respectively.

IV. 4 Evaluation of the inverse transformations

Evaluation of the inverse transformation is made by the following steps;
(1) give a form to the source function, (2) perform inverse Fourier transfor-
mation by using convolution formula, {3 ) change the order of integration, and
(4) perform inverse Laplace transformation by using convolution formula.

Let us use the same source function that has been used in the preceding

chapters ;
{0 <7V
= fi 4,19
o | cosh™ trlV o t> 7|V (4.19)
y=Vx+ (f — 2t
and

w1 1

A€, D) = Ty T ve s R (4.20)

(i) Evaluation of ¢, (x, z, ) in region 1
In the region I, the term whose evaluation is required is @ (4.17).  Since
- . 1 _
the term @z shows the inverse transformation of a product of — - @, (p) g (£)

_ VERgRT . ; . ¢
and e "2 e use Fourier convolution formula® for the inversion. Thus we

get for z > 0

¢Mﬂ ot e o [4‘% ) (/(5) % @ verdja z]

) 1 - ' 1 e hz
= L 1[1/2” &._mu(a’ ——b, 77) p'Kg[th +f2]‘]/(x__77)274j¥227

K Chy—2)+2") dy ]

1 hz

=L~ [1/‘)” S s b V0 tz ————— K, (V7 +) - K,/ (a—7)* +27) dv]

(4.21)
Fourier convolution formula
- R S gy g L (% :
F-[F(E) G&)) = 1—/—2;;8_00F(E) G ™ dx= 7§S_w”(”)f<"— 2) dv

where F (&) and G (€) are the Fourier transforms of f(x) and g (x).
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Next, we change the order of integration, namely we apply inverse
Laplace transformation to the integrand of (4.21). Since the integrand of (4.21)
has a form of product of K, and K, as functions of p, we use Laplace con-
volution formula*. Then we get

B = 1 S” .z
N Yo )y VIV x— 1) + 2
4 1 i
[{ e - = dvdy
. Ve=w'+2, [, -0tz
o]/(f_r)z_vvzfi x V) z_/r_ &2 z
(4.22)

If we denote V9 +7 V=1t and V(x— )+ 2/V = £, the domain of
integration in (4.22) is reduced to £, << v < f — f;, because @,y vanishes for
<t and (£ —7) < £;. Thus formula (4.22) becomes

a z -t rdr
I = o e NS MY e e e L CED

(ii) Evaluation of @, (%, 2, ) in region II
The representation of source function as a form of inverse transformation
(4.18) leads it to another integral representation. Considering the integrand of
1 — VE2XFE £ — VEEGRE
s and ¢ ° % we use Fourier
V'€ + I

convolution formula, and we get

(4.18) as a product of

—hz

= —1[ S Ko Ch 1/77 ‘*‘fzj .'/( )

4 KV =) k2 dn ]
(4.24)

Then ¢, is combined with the second term of (4.16), forming a single term of
integration with respect to % in the range (— co << 7 <~ — b) and (@ < 3 < o).
Then we again use Laplace convolution formula for the product of K, and K; in
(4.24). Thus we get the final expression of the displacement potential in region II,

#2 (5. 2, 1) = i/}'gn: ([i g [ {(x—n)*

@ T

i—~#
)V Vi e 4

(4.25)
Pressure solution is obtained from (4.23) and (4.25) by the relation

0%
or’

dp=—p (4.26)

* laplace convolution formula
z
L FE 6WI={ -9 g ar

where F(s) and G (s) are Laplace transforms of £(¢) and ¢ (1.
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IV. 5 Interpretation

Following physical interpretations are derived from the solutions obtained
in (4.23) and (4.25) for: (i) wave front, (ii) mechanism of reflection, (iii)
mechanism of diffraction in region I, (iv) amplitude variation with diffraction
angle in region I, (v) mechanism of refraction (Huygens' principle), and (vi)
mechanism of diffraction in region II.

For simplifying the explanation, the medium is devided into four regions :

referring to Fig. 30, reflection region, refraction region and diffraction region I
and IL

4
/
E)l'ffracﬁon l?egio’nﬂ //
rs
(I'mage souyre),/
‘\\ - Re:fra.cﬂon Region
v K
% )
7
’ AY
N
4 \ .
traction Region I
)/ R ﬂ,ﬁ aclion Kegion
¢ (Sourcey
’ \
\
Reflection Regio'n. N
kS
A
0
Fig. 30

(1) Wave front

The first break wave front of @, and @, are determined by the smallest
value of 7 in (4.23) and (4.25). Because @, and @, have values in the range
{—1 > 1, the smallest value of # from which time ¢,.; and @, begin to have
values, is equal to (; +1,). (£, + £,) is still the function of 7. Therefore, the
arrival time of the first break, #,, is expressed by

£, = Smallest value of (£, + £,) (4.27)
where
t = —%/‘1/52?7‘?
= VE— A
|4
and the ranges of 7 are
[—b<77<a for  @ren

| < —b v>a for o,
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Let us examine the wave fronts due to a end point @, assuming b is very
large. In the reflection region, £, becomes

1 f
v (an +0)

f; = Smallest value of
where, referring to Fig. 31,

£ —_—
0= V't + f2

0,=V(x—n?+2
—b<yp<a
Therefore the wave front of the first break of @..; in the reflection region is the
circle with 2 = — f, x = 0, the image source point, as a center.
In the diffraction region I, #;, becomes

1 == .

fy = v (Va+, +1x—a+2)
because the range of 7 is — b < 7 < a. Therefore, the wave front of the first
break of @.pq in diffraction region I coincides with the circle with x = @, z = 0,

the end point of the plane, as a center.
In the refraction region, referring to Fig. 32, £, becomes

1
£y = Smallest value of (pf +0)
14 7 "
i)
7
-5
{
Z
Fig. 31 Fig, 32

where the range of 7 is ¥ > @ and » <~ —b. Therefore, the wave front of ¢,
in the refraction region is the circle with z = f, x = 0, the source point, as a
center,

In the diffraction region II, £, becomes
1
1%

because the range of 7 is 7 > @ and 7 < —b. The wave front is the circle

¥ = (Ve + 1 +1Vx—a®+2")



46

with x = @, z =0, the end point of the plane, as a center.

All the wave fronts of the first break, thus obtained, are illustrated in
Fig. 33. Perhaps a question will arise for the diffraction wave front in the
reflection region and refraction region. The mathematical expression of the solu-
tion does not show this wave front. The question for the diffraction wave in
these regions will be answered in following discussions.

Image b
(saurce)

Fixed plame > X

(Source) ¥

Z

Fig. 33 Wave front of each term

(i) Mechanism of reflection

Because an understanding of reflection mechanism is helpful for the inter-
pretation of diffraction phenomena, let us examine reflection mechanism. Then,
diffraction phenomena will be interpreted as a special case of reflection phenomena.

Reflection by an infinite fixed plane is obtained from equation (4.23), by
putting ¢ = © and —b = —o0 ;

1 z V‘“ rdr

vV or S--oo{(x—v)”-zz} t 1/(t~r)”—t1'~’l/r~t22]d77 . B

The second integration with respect to % shows that the wave form of the reflec-
tion wave at a certain point (¥, z) in region I is made up of contributions from
every point on the boundary. The first integration with respect to = shows the
time variation of each contribution. This will be interpreted as that every point
on the boundary, when it is hit by a source wave, reflects back acoustic energy
to all directions. And the reflected acoustic energy varies with time according
to the source wave function. The transient reflection wave, which is observed
at a certain point (x, z), is being formed with time by composing each contribu-
tion from every point on the boundary. The transient reflection wave form of
an acoustic pulse will be completed when all the contributions have arrived at
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the receiving point.
(iit) Mechanism of diffraction in region I

Comparing the formula of @, (4.23) with the formula (4.28), it will be
obvious that so-called diffraction phenomenon is nothing but a part of reflection
phenomenon, reflection from a finite boundary. There will be no separated,
particular wave which is so-called diffraction wave. This will be more naturally
understood by looking at other features associated with diffraction.

(1) So-called diffraction wave, @, in diffraction region I, is composed
of reflections from boundary — & < x < @. And the path of each contribution
is different from the path of geometrical optics (Snell’s law).

(2) The end point of an reflection boundary is not the only factor
which determines the characteristics of so-called diffraction wave. Other area of
reflection boundary also contributes to the diffraction wave.

(3) The reflection wave in the reflection region is also affected by the
finite boundary, and differs from the reflection wave from an infinite boundary.

(4) There is no additional acoustic energy besides reflection in the reflec-
tion region. So-called diffraction wave in reflection region will not exist, except
an indication, if it were observed, of absence of energy contribution in the reflec-
tion wave form.

From the above features, so-called diffraction may be called ‘incomplete
reflection ', meaning that the diffraction. is a part of reflection whose wave form
is not completed due to the finite boundary of reflection.

(iv) Amplitude variation with diffraction angle in region I

A term in the integrand of (4.23), 2/{(x — ) + 2%}, gives a factor for
an amplitude variation of diffraction wave. Because of

& _ 1 0
G—n'+z2 ¢ &
L2
‘9
] (X,z)
|
(Source) §
Z

Fig. 34
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referring to Fig. 34, the amplitude variation with diffraction angle will be mild.
This factor also suggests that the contribution from a point of the boundary has
the maximum at & = 0, on the vertical direction to the boundary, and vanishes
at 0 = n/2, in the direction of the boundary.

(v) Mechanism of refraction ; Huygens’ Principle

If we consider the case where the fixed plane vanishes, refraction wave in
region II becomes

—

-t cdr

1 e —zdn S . -
V"ﬁs_m G—7+2 ) VE—0 -V —1 (429

by putting @ = b =0 in equation (4.25). This shows that, if we assume a
virtual boundary in liquid, transmitted wave is expressed by the composition of
contributions from every point at the virtual boundary. This is nothing but
Huygens’ Principle. There is however, another information to be added to that
principle. It is seen that that the newly born source at the boundary emits
energy only to one half space”, to the direction of propagation, and that the
energy has its maximum on the perpendicular direction to the boundary and
decreases with direction by a factor cos  and vanishes at the direction ¢ =-m/2.

(vi) Mechanism of diffraction in region II

Comparing the formula of @, (4.25) with (4.29), it will be obvious that
so-called diffraction phenomenon in shadow region is nothing but a refraction
phenomenon.  Similar features as described in (iii) and (iv) in this section are
seen for the mechanism of diffraction in shadow region. There will be no
separated diffraction wave in the refraction region.

Summary and Conclusion

The propagation of transient elastic wave in 2-dimensions is investigated
by the method of dual integral transformation. Laplace transformation is applied
with respect to time coordinate, and Fourier transformation is applied with
respect to one space coordinate. Both wave equations and boundary conditions
are transformed, and formal solutions are obtained in the transformed space.
Then inverse transformations of the formal solutions are evaluated by using the
translation property and &-function property of the Laplace transformation. By
this method, mathematical expression for solving the problem are reduced to a
simple form.

Chapter I. Exact solutions of transient elastic waves generated by surface
forces are obtained at every point in an elastic solid. Spacial surface forces are
treated as a consequence of Fourier transformation applied to one space coordinate.

Chapter II. The buried line source problem is re-written by the method
of dual integral transformation developed in Chapter L Exact solution of the
transient elastic wave at every point in a medium is obtained. A comparison of
the method of dual integral transformation and other methods are discussed in
IL. 4.

* It will be easily seen from (4.23) that $ress becomes zero in this case.
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Chapter TII. Reflection and refraction of an acoustic pressure pulse at a
liguid-liquid interface is treated so as to clear up the basic picture of reflection
and refraction phenomena. Exact solution of pressure form is obtained at every
point in media and numerical examples are presented. Results obtained are as
follows :

(1) The pressure form of the refracted wave has a sharp spike with
considerable amplitude.

(2) The phase of reflected wave is inversed beyond the critical angle.
However there is another phase of large amplitude just ahead of the reflected
wave, Thus, reflection wave forms show the oscillatory feature.

(3) Even beyond the critical angle, there is a transmission of consider-
able energy from the direct wave into the lower medium.

(4) Reflection ratio of reflected wave to incident wave increases with
incident angle. Beyond the critical angle it begins to decrease and becomes
negative value meaning phase inversion. The point beyond which phase inver-
sion takes place is located off the critical angle.

(5) From these results, an interpretation for the mechanism of reflection
and refraction phenomena is described in detail in III. 4.

Chapter 1V. Diffraction of an acoustic pressure pulse by a finite fixed
plane is investigated. An application of the convolution formula to the inverse
transformation leads the exact solution to a form of integral of elementary func-
tions. Results obtained are as follows :

(1) Diffraction phenomenon is, in its nature, reflection and refraction
phenomena, whose energy is supplied from a finite boundary.

(2) There will be no diffraction wave in the reflection and refraction
regions (Fig. 30), except an indication, if it were observed, of absence of energy
contribution in the reflected wave form.

(3) Reflected wave in the reflection region and refracted wave in the
refraction regicn are also affected by the finite boundary.

(4) The amplitude variation of diffracted wave due to diffraction angle
will be mild because of a factor cos 0 (cf. Fig. 34).

(5) Another mathematical expression is obtained which gives Hugyens’
principle with the additional information. It is mathematically deduced that
newly born source at the boundary emits energy only to one half space and the
energy varies with direction by a factor cos 0.

The writer wishes to express his hearty thanks to Dr. K. Iida, Dr. H.
Honda and Dr. Y. Sato, who gave him kind advices for the completion of this
manuscript, and also to Dr. C. H. Dix, who kindly read the original manuscript
of chapter IV.
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The Geological Survey of Japan has published in the past
several kinds of reports such as the Memoirs, the Bulletin, and

the Report of the Geological Survey.

Hereafter, all reports will be published exclusively in the Reports

of the Geological Survey of Japan, The Report will be consecutive

to the numbers of the Report of the Imperial Geological Survey

of Japan hitherto published. As a general rule, each issue of

the Report will have one number, and for convenience’s sake,

the following classification according to the field of interest will

be indicated on each Report.

a.
X b.
A. Geology & allied P
sciences d.
e.
f.
a.
b.
c.
" !ood,
B. Applied geology {
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C. Miscellaneous

Geology

Petrology and Mineralogy
Paleontology

Volcanology and Hot Spring
Geophysics

Geochemistry

Ore deposits

Coal

Petroleum and Natural gas
Underground water
Agricultural geology
Engineering geology
Physical prospecting,
Chemical prospecting & Boring

D. Annual Report of Progress
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