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1 Introduction

The package FaultNVC extracts planar fault alignments in hypocenter distributions through hier-

archical clustering of hypocenter positions and point-cloud normal vectors (PCNVs).

Hypocenter alignments typically reflect complex crustal fault structures. Recent developments

of hypocenter-based clustering opened the possibility for objective modeling of crustal faults (e.g.,

Ouillon et al., 2008; Kamer et al., 2020; Truttmann et al., 2023), however, spatial clustering still

struggles with constructing complex fault geometries.

A recent study demonstrated that incorporating PCNVs into hypocenter clustering is efficient

for constructing intricate planar features without specifying the number of fault planes (TwoS-Clust;

Sato et al., 2022, 2023). PCNV refers to the normal vector of a plane representing the distribution

of points in the vicinity of a target point. It is a feature used in fields such as object recognition.

The fault plane extraction using TwoS-Clust consists of two steps of clustering. First, clustering

of PCNVs is performed to extract groups of hypocenters expected to have similar strike and dip.
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Then, spatial clustering based on hypocenter positions is applied to the segmented groups to ex-

tract groups of hypocenters that are distant from each other in 3D space. For the latter clustering,

we use HDBSCAN (Campello et al., 2013; McInnes et al., 2017), which does not require specifying

the number of clusters. HDBSCAN is a method that can identify clusters of various shapes and densi-

ties and effectively exclude noise points. However, since TwoS-Clust performs clustering in two

steps, the number of parameters increases.

After their two-step clustering method of PCNVs and hypocenter positions, we have devel-

oped a single clustering algorithm using HDBSCAN, extracting complex Fault planes through PCNV
Clustering along with hypocenter positions (FaultNVC; Sawaki et al., 2025). FaultNVC is a Python

package built upon a robust class-based architecture and requires minimum user coding.

The instruction below shows how to setup and run FaultNVC for extracting intricate fault planes

from hypocenter distributions.

2 Installation

2.1 Setup

You first need to unzip the downloaded file. The following instructions assume that the unzipped

package is placed in $HOME/FaultNVC directory. We recommend using a conda environment

to establish the virtual environment. You need to install FaultNVC using pip locally. In the

instructions below, "nvc" is just used as an example environment name.

• Using conda/mamba (recommended)

You may replace mamba with conda in the following instruction

$ cd $HOME/FaultNVC # move to the unzipped directory

$ mamba create -n nvc python=3.11 # python 3.10+ required

$ mamba activate nvc # do not forget to activate the environment

# Install required packages

(nvc) $ mamba env update -f ./environment_dep.yml

# pytest for installation test (skippable)

(nvc) $ mamba install pytest

Then install FaultNVC
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# Install FaultNVC locally

(nvc) $ pip install .

# Check the installation

(nvc) $ mamba list FaultNVC

This is optional, but you may install optional packages

(nvc) $ mamba env update -f ./environment_opt.yml

• Using pip on venv (alternative)

# Check if an existing python has version 3.10+

$ python -V

# Create an environment using venv

$ mkdir $HOME/venv_src # Any name is OK

$ cd $HOME/venv_src

$ python -m venv nvc # Specify python3.10 or python3.11 if needed

$ source nvc/bin/activate

# Install FaultNVC locally

(nvc) $ cd $HOME/FaultNVC # move to the unzipped directory

(nvc) $ pip install . # install FaultNVC and other packages

# Check the installation

(nvc) $ pip show FaultNVC

# pytest for installation test (skippable)

(nvc) $ pip install pytest

2.2 Test your installation

You may skip the installation test.

# Run test files

(nvc) $ (cd tests && pytest)

Check if all tests are passed. If any test is failed, retry installation.
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2.3 Requirements

FaultNVC requires Python 3.10+ and following packages:

• HDBSCAN (hdbscan; McInnes et al., 2017)

(different from the class integrated in scikit-learn: sklearn.cluster.HDBSCAN)

• NumPy (numpy)

• Numba (numba)

• Matplotlib (matplotlib)

• scikit-learn (sklearn)

• pandas (pandas)

• pyproj (pyproj)

• joblib (joblib)

Following packages are optional:

• Cartopy (cartopy)

• Plotly (plotly)

• Colorcet (colorcet)

• tqdm (tqdm)

3 How to Use

3.1 Preface

The class FaultHDBSCAN has numerous methods, performing all the necessary processes for this

analysis. The input data is three-dimensional point-cloud data (north, east, and depth), such as

hypocenter distributions. The general steps are:

1. Initialize FaultHDBSCAN

2. Load point-cloud data and compute PCNVs

3. Run HDBSCAN (clustering) under various parameter sets

Parameter and argument settings for FaultHDBSCAN are described in Section 4.2.1.
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3.2 Compute point-cloud normal vectors

As the first step, PCNVs are estimated using KNN-PCA. Important parameters described in Sawaki

et al. (2025) are following:

• max_neighbors_normal_vector (kNV): Maximum number of nearest neighbors for KNN–

PCA to estimate PCNVs

• max_dist_neighbors (rNV): Maximum allowable distance for neighbor search in the same

dimension of distance as the input point cloud. This prevents including distant points for a

point of interest with low density

Here we use a sample dataset sample1 in $HOME/FaultNVC/examples/sample1 the following

procedure.

import numpy as np

import pandas as pd

from fnvc import FaultHDBSCAN

# Sample dataset (random values)

df_input = pd.read_csv(

'$HOME/FaultNVC/examples/sample1/points.txt',

sep=r'\s+', header=None, names=('E','N','D'),

)

# Parameters for computing point-cloud normal vectors

max_neighbors_normal_vector = 150

min_neighbors_normal_vector = 20

max_dist_neighbors = 2.0

min_planarity = 1.25

# Initialize FaultHDBSCAN

clusterer = FaultHDBSCAN(

max_neighbors_normal_vector=max_neighbors_normal_vector,

min_neighbors_normal_vector=min_neighbors_normal_vector,

max_dist_neighbors=max_dist_neighbors,

min_planarity=min_planarity,

)

The method .calc_normal_vector() calculates PCNVs by KNN-PCA.
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# Load point-cloud data and compute point-cloud normal vectors

clusterer.calc_normal_vector(

df_input,

id_points=df_input.index.values,

kw_points=dict(N='N', E='E', D='D'), # convert colnames to (N,E,D)

standardize=True, # standardize positions

max_workers=2, # parallel computing

)

The method .plot_events() plots normal vectors or apparent strike.

# Normal vector

fig = clusterer.plot_events(

includes_normal=True,

color_normal=True,

mode='2d', # "2d", "3d", and "cartopy"

cbar_rect=[0.15,0.15,0.2,0.2]

)

# Apparent strike

fig = clusterer.plot_events(

includes_normal=False,

color_normal=False,

cbar_rect=[0.15,0.15,0.2,0.2]

)
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3.3 Run HDBSCAN

The method .fit_predict() executes clustering and extracts fault planes under the specified

parameter set:

• min_samples (mpts) – Number of nearest neighbors to calculate a core distance

• min_cluster_size (mclSize) – Minimum size to be considered a cluster
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• cluster_selection_epsilon (ε) – Maximum distance to merge two clusters in the con-

densed dendrogram

Candidate values for mpts and mclSize can be selected through trial and error to ensure that the

resulting clusters reflect primary plane structures or include minor clusters, setting ε to 0.0. It is

advisable to start with a large value for mpts and mclSize and then search for a smaller value that

allows the desired outcome. However, choosing min_samples and min_cluster_size might not

be straightforward. You may simplify the clustering by setting mclSize = mpts (Campello et al.,

2013; McInnes et al., 2017), depending on the case.

Once you fixed mpts and mclSize, you may increase ε to merge minor clusters. It is not likely

that ε exceeds 1.0 because the distance between two feature vectors (qk, ql) is defined as

dFV(qk,qk) =
√

∥X̃k − X̃ l∥2 +2(1−|nk ·nl|), (1)

where X̃ is the standardized position of X :

X̃ =
X√

V [N]+V [E]+V [D]
, (2)

and n is a PCNV. A proper range of ε depends on the case, but plotting a condensed dendrogram

by .plot_dendrogram() may help.

Each call to .fit_predict() is assigned a unique key starting from 0. The method manages

a dictionary of parameter sets and results, keyed by these unique identifiers.

# key 0

clusterer.fit_predict(

min_cluster_size=5,

min_samples=5,

cluster_selection_epsilon=0.000,

)

# key 1

clusterer.fit_predict(

min_cluster_size=5,

min_samples=5,

cluster_selection_epsilon=0.300,

)

# key 2

clusterer.fit_predict(
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min_cluster_size=3,

min_samples=2,

cluster_selection_epsilon=0.000,

)

The method .show_computed_params() returns keys with the associated parameter sets:

min_cluster_size min_samples cluster_selection_epsilon

0 5 5 0.000

1 5 5 0.300

2 3 2 0.000

The method .plot_planes() creates a figure of extracted fault planes. Specify key for the

associated parameter set:

# max_angle_diff: maximum median angle offset of

# point-cloud normal vectors and fault normal

# min_points: minimum number of points to plot a plane

fig = clusterer.plot_faults(

key=1,

mode='2d', # "2d", "3d", and "plotly"

max_angle_diff=30.0, # default to 90.0

min_points=20, # default to 5

)
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3.4 Output results

• Output the results as DataFrame

results_clustering, output_events = clusterer.output_planes(key=0)

– results_clustering: Dataframe for extracted fault parameters

– output_events: Dataframe for hypocenter cluster numbers

• Save the results into CSV files

filename = "path/to/samplefile0"

clusterer.save_model(filename=filename, key=0)

# path/to/samplefile0_planes.csv -> results_clustering

# path/to/samplefile0_events.csv -> output_events

3.5 A script for sample1

You can test the procedure above by running a python script as follows:

(nvc) $ python $HOME/FaultNVC/examples/sample1/sample1.py --min_samples 2 --mode 2d

--max_angle_diff 30.0 --min_points 10↪→

Optional arguments can be found by $python sample1.py -h.
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4 API overview

4.1 Modules

• fnvc – A top module, which is importable as import fnvc

• fnvc.clustering – Stores class FaultHDBSCAN and functions for clustering

• fnvc.synthetic – Stores functions for synthetic tests

• fnvc.utils – Stores helpful functions

4.2 Classes with main methods

4.2.1 fnvc.clustering.FaultHDBSCAN – Main class

Class FaultHDBSCAN, a subclass of fnvc.clustering.BaseClustering, has numerous meth-

ods, performing all the necessary processes for this analysis. Note that we use the coordinate sys-

tem of [North, East, Down] positive. Thus, the input data of [X,Y,Z] is transformed into [Y,X,Z]

(+Z & +D for downward).

Import FaultHDBSCAN can be importable from the top module:

from fnvc import FaultHDBSCAN

Arguments Class arguments only for KNN–PCA

• max_neighbors_normal_vector (kNV) – The maximum number of nearest neighbors for

KNN–PCA to estimate PCNVs

• max_dist_neighbors (rNV) – The maximum distance to find nearest neighbors. This pre-

vents including distant points for a point of interest with low density
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Methods Calculating PCNVs, clustering, plotting, and saving fault parameters...

• .calc_normal_vector(all_points, id_points=None, kw_points=None)

Calculate PCNVs formed by the top two principle-component vectors. Each dataset com-

poses of kNV points retrieved using the nearest neighbor method with KDtree algorithm

– all_points – ndarray or DataFrame of all data points. 1D array of [X, Y, Z] for

each row

– id_points – List of event IDs

– kw_points – Dict for component names (N,E,D)

Returns .normal_vectors_kneighbors (ndarray): PCNV for each hypocenter

• .fit_predict(min_cluster_size=5, min_samples=None, cluster_selection_epsilon=0.0)

executes clustering and extracts fault planes. Upon invocation, the method generates a

unique key starting from 0 and uses it to index the associated parameter set and result

– min_samples (mpts) – Number of nearest neighbors to calculate a core distance. De-

fault to None, setting to mclSize

– min_cluster_size (mclSize) – Minimum size to be considered a cluster.

Default to 5

– cluster_selection_epsilon (ε) – Maximum distance to merge two clusters in the

condensed dendrogram

Default to 0.0

• .show_computed_params() prints parameter sets for the corresponding keys in standard

output. Returns None

• .output_planes(key, min_points=5) outputs clustering results of the extracted planes

and events

– key – Index of the associated parameter set and result

– min_points – Minimum number of points in an output cluster. Default to 5

Returns results_clustering and output_events in pandas.DataFrame. The former is

for the extracted fault parameters, and the latter is for hypocenter cluster numbers
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• .save_model(filename, key, min_points=5) saves the fault model and event clusters

in CSV format

– filename – Path to the output file (e.g., path/to/sample1)

– key – Index of the associated parameter set and result

– min_points – Minimum number of points in an output cluster. Default to 5

• .plot_events(mode="2d", includes_normal=True, color_normal=True,

s=2, lw=1.5, size_vector=1.0, cmap=None, cbar_rect=None, alpha_event=0.7,

fig=None, ax=None) plots events and normal vectors

– mode – Type of projection. Select one from "2d" (Cartesian map view), "3d" (bird’s

eye view), and "cartopy" (geographic map view). Default to "2d"

– includes_normal – Whether to include normal vectors. Default to True

– color_normal –Whether colors are based on normal vectors (True) or based on ap-

parent strike (False). If set to False, normal vectors are converted to apparent strike.

Default to True

– s – Size of scatter plot

– lw – Linewidth

– cmap – cmap of colorbar. Specify str or matplotlib.colors.Colormap. If not

specified, DEFAULT_CYCLIC_CMAP will be used

– cbar_rect – Bbox for colorbar

– alpha_event – Opacity of scatter plot. Default to 0.7

– fig – matplotlib.figure.Figure. If not specified, new Figure object will be cre-

ated.

– ax – matplotlib.axes.Axes. If not specified, new Axes object in fig will be created

Returns fig (matplotlib.figure.Figure)

• .plot_planes(key, mode="2d", max_angle_diff=30.0, min_points=5, size=1.0,

kw_planes_mpl, cmap="jet", cone_scale=1.0, plotly_layout=None,

fig=None, ax=None, **view_kwargs) plots extracted fault planes

– key – Index of the associated parameter set and result
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– mode – Type of projection. Select one from "2d" (Cartesian map view), "3d" (bird’s

eye view), and "plotly" (bird’s eye view on plotly). Default to "2d"

– max_angle_diff – Maximum median angle difference between fault normal and point-

cloud normal vectors. Specify 90.0 to plot all the clusters. Default to 30.0

– min_points – Minimum number of points in an output cluster. Default to 5

– size – Size of scatter plot

– kw_planes_mpl – Dictionary in mpl plot used for plotting planes. Default to {"c"="k",

"lw"=1.0, "ls"="–", "alpha"=0.5}

– cmap – cmap of colorbar. Specify str or matplotlib.colors.Colormap. If not

specified, DEFAULT_CYCLIC_CMAP will be used

– cone_scale – Size of normal vectors

– plotly_layout – Optional layout for plotly plot

– fig – matplotlib.figure.Figure or plotly.graph_objects.Figure (mode="plotly").

If not specified, new Figure object will be created

– ax – matplotlib.axes.Axes. If not specified, new Axes object in fig will be created

except when mode="plotly"

Returns fig (matplotlib.figure.Figure or plotly.graph_objects.Figure)

• .plot_dendrogram(key, ax=None, recursionlimit=None, **kwargs) plots a den-

drogram for the specified parameter set

– key – Index of the associated parameter set and result

– ax – matplotlib.axes.Axes. If not specified, new Axes object will be created

– recursionlimit Set the recursion limit by sys.setrecursionlimit(). Note that

this works for the whole process

Returns ax (matplotlib.axes.Axes)

4.3 Functions

4.3.1 fnvc.utils.compute_each_normal_vector(locations, returns_EVR=False)

Computes the normal vector (PC3 eigenvector) of the input point cloud. Normal vector is defined

as upward direction, but we use the coordinate system of [North, East, Down] positive. So, Z

component of the normal vector must be negative
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• locations – ndarray for input 3D point cloud data (NED)

• returns_EVR – Whether to return variance ratios. Default to False

Returns ndarray of the upward normal vector

4.3.2 fnvc.utils.compute_fault_params(points)

Computes various fault params required for output files

• points – ndarray for input 3D point cloud data (NED)

Returns tuple of box_arr, fault_length, fault_width, normal_vector, strike_vector,

dip_vector, variance, planarity, and pc3_variance_ratio

4.3.3 fnvc.utils.init_transformer(epsg_local)

Initializes pyproj.Transformer from a local EPSG code. This will help convert geographic/-

Cartesian coordinates into the other

• epsg_local – str for EPSG code (e.g., "epsg:6675")

Returns two pyproj.Transformer objects: the former converts geographic to Cartesian and the

latter converts Cartesian to geographic

4.3.4 fnvc.utils.fix_aspectratio(fig, only_visible=True)

Fixes the aspect ratio for plotly plot. Note that plotly must be importable on your environment.

• fig – plotly.graph_objects.Figure

• only_visible – Determines the axes scale only from visible data points when set to True.

When set to False, determines it from all data points.

4.3.5 fnvc.synthetic.synthesize_cluster(n_points, normal_vector_NED,

planar_shape="uniform", scale=0.1,

strike_lim=[-2,2], dip_lim=[-1,1], returns_as_END=True)

Synthesize point cloud data around a given planar shape. The origin of data points is [0,0,0]

• n_points – The number of points to be synthesized
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• normal_vector_NED – ndarray of the upward normal vector

• planar_shape – Shape of the plane on which data points are distributed. Choose one from

"uniform" or "circular". Default to "uniform"

• scale – Standard deviation of the Gaussian noise added to the data points. Default to 0.1

• strike_lim – Range for the strike direction. Default to [-2,2]

• dip_lim – Range for the dip direction. Default to [-1,1]

• returns_as_END – Whether to return output in END. Default to True

Returns ndarray for output 3D point cloud data in END (if returns_as_END=True)

Note

• This package has been tested on Ubuntu 22.04

• The authors do not assume any responsibility for any issues or consequences that may arise

from the use of this package
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Terms of use

• Please cite this Open-File Report and our preprint (or a papar when published) for this

method (Sawaki et al., 2025) if you use the package

• The latest version of this package, FaultNVC, can be accessible from the principal developer,

Y. Sawaki , upon request

• Any bug reports and suggestions are welcome!
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