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Preface

Both of the NCKU-DPRC (the Disaster Prevention Research Center, National Cheng
Kung University, Taiwan) and the 1G-GSJ (Institute of Geoscience, Geological Survey of
Japan, National Institute of Advanced Industrial Science and Technology) agreed to pursue
scientific and technical cooperation about hydrological and geochemical research for
earthquake prediction in Taiwan in February 2002. In 2005 NCKU-DPRC and GSJ agreed
to continue the cooperation.

Based on the cooperation agreement, DPRC-NCKU and GSJ have been carrying out
cooperative research activities on (1) Investigation of groundwater anomalies associated with
the earthquake in Taiwan; (2) Analysis of the natural groundwater level changes in
correlation to the geotectonic and meteorological activities; (3) Improving methodologies in
monitoring and studying the groundwater anomalies with respect to geotectonic activities
and/or other aspect as well; (4) Compiling the future periodically-monitored information of
groundwater chemical and physical properties, and geotectonic anomalies; and(5) Analysis of
the groundwater anomalies as earthquake precursors.

The 1% International Workshop on Hydrological and Geochemical Research for
Earthquake prediction was held on Sep. 24, 2002 at GSJ, AIST, Tsukuba, Japan. The
workshop was a good beginning to promote the research cooperation between Japan and
Taiwan. The main purpose of the workshop this time is to proceed the collaboration and to
provide an opportunity to share the precious experience with other researchers. In total,
seventeen papers will be presented in this workshop.

Although the earthquake prediction is a hard scientific challenge in the century, keeping
on study and making any kind of approach are the better way to contribute earthquake hazard
mitigation. We hope that this workshop will offer the good ideas and experiences for related
works. In view of this sincerecooperation, we absolutely believe this workshop will help us to
preserve more safety for our life.

September 2009
Chjeng-Lun Shieh and Naoji Koizumi
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Geochemical Research for Earthquake Prediction

Integrated groundwater observation for forecasting the Tonankai and
Nankai earthquakes

N.Koizumi, Y.Kitagawa, S.Itaba, N.Matsumoto and R.Ohtani
Geological Survey of Japan, AIST

Abstract

Geological Survey of Japan (GSJ), AIST has been monitoring groundwater in the Tokai
area for earthquake prediction since 1970's. Given the “pre-slip” model indicating that slow
aseismic slip occurs at the tectonic plate boundary a few days before an earthquake, our
network can detect the groundwater level changes that may precede the occurrence of the Tokai
earthquake. However, the possibility of occurrence of the Tonankai and Nankai earthquakes
has also been increasing. In addition recent studies have found that episodic slow slips with
deep low frequency tremors occur near the source regions of the Tokai, Tonankai, and Nankai
earthquakes. The slow slips resemble the pre-slip. Therefore we constructed 12 new integrated
groundwater observatories in the Tonankai and Nankai regions by January 2009 (Fig.1). Each
of these includes three wells that monitor groundwater levels and temperatures, crustal
deformation, and seismic activity (Fig.2). Using the data from the new observatories, we
already detected strain changes related to more than ten episodic slow slips with the tremors in
the plate boundary near the Tonankai region for the recent two years (Fig.3).

@ CONSTRUCTED BEFORE 2000
@ CONSTRUCTED IN 2( 2008
3 AREA OF EP1SODIC SLOW SLIPS
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Fig.1 Integrated groundwater observatories of Fig.2 Schematic figure of the system of our new

GSJ, AIST. observatory (N1-N12) in Fig.1.
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Integrated groundwater observation for
forecasting the Tonankai and Nankali
earthquakes

*Naoji Koizumi, N.Matsumoto, R.Ohtani,
Y.Kitagawa,S.ltaba and N.Takeda
(Geological Survey of Japan, AIST)

Geological Survey of Japan, AIST

OUTLINE
1)Introduction of the Nankai and Tonankai
Earthquakes and Groundwater Changes
Related to the Past Nankai Earthquake

2)Recent Detection of Deep Low-Frequency
Tremors and Episodic Slow Slips (SSE) on
the Plate Boundary

3) System of our New Integrated Groundwater
Observation

4) Preliminary Results

Geological Survey of Japan, AIST

OUTLINE

1) Introduction of the Nankai and Tonankai
Earthquakes and Groundwater Changes
Related to the Past Nankai Earthquake

2)Recent Detection of Deep Low-Frequency
Tremors and Episodic Slow Slips (SSE) on
the Plate Boundary

3) System of our New Integrated Groundwater
Observation

4) Preliminary Results
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Geological Survey of Japan, AIST
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NANKAI, TONANKAI AND
TOKAI EARTHQUAKES
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Preseismic groundwater anomalies
1-10 days before the 1854 Nankai earthquake

Shigetomi et al.(2005)
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3.DECREASE IN GRONDWATE

EURASIAN
PLATE

A Few Large Groundwater Anomalies Occurredina
Wide Area W

Possible Mechanism

*Preseismic Small Crustal Deformation in the Wide Area
by a Slow Slip and Lodcal Groundwater System
Amplifying the small Crustal Deformation.

Geological Survey of Japan, AIST

Deep Low-Frequency Tremors
and EpISOdIC Slow Sllp Events (SSE)
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OUTLINE
1)Introduction of the Nankai and Tonankai
Earthquakes and Groundwater Changes
Related to the Past Nankai Earthquake
2)Recent Detection of Deep Low-Frequency
Tremors and Episodic Slow Slips (SSE) on
the Plate Boundary

3) System of our New Integrated Groundwater

Observation
4) Preliminary Results
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Geological Survey of Japan, AIST




Integrated Groundwater Observatory
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OUTLINE

1)Introduction of the Nankai and Tonankai
Earthquakes and Groundwater Changes
Related to the Past Nankai Earthquake

2)Recent Detection of Deep Low-Frequency
Tremors and Episodic Slow Slips (SSE) on
the Plate Boundary

3) System of our New Integrated Groundwater
Observation

4) Preliminary Results

4-1) Detection of SSE in the Southern Part of the Kii

Peninsula
4-2) Anomalous Changes in Strain and Groundwater Level
Just After the Earthquake off Muroto on July 22,2009

Geological Survey of Japan, AIST
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4-1) Detection of SSE
in the Southern Part of the Kii Penlnsula
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CONCLUSIONS

1)The Groundwater Level Decrease Before the Past Nankai
Earthquakes Can Be Explained by Preseismic Small
Crustal Deformation and Local Groundwater System
Amplifying the small Crustal Deformation.

2)Based on the Past Earthquake-Related Groundwater
Changes and Recent Detection of Deep Low-Frequency
Tremors and Episodic Slow Slip Event (SSE), We
Designed and Constructed 12 Integrated Groundwater
Observatories for Forecasting the Tonankai & Nankai
Earthquakes.

3)Using the Strain Data of New Observatories, We Have
Found SSEs in the Southern Part of the Kii Peninsula.
We Also Found the Anomalous Changes in Strain and
Groundwater Level Just After the Earthquake off Muroto
on July 22,2009, Which Can Be Partly Explained by SSE
induced by the Earthquake.

Geological Survey of Japan, AIST
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Precursory Swarms of Moderate-sized Earthquakes in Eastern Taiwan

Ruey-Juin Rau and Shih-Hung Hsu
Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan

Abstract

We investigated the correlation between swarm and large earthquakes for the events
occurred in an area near the transition corner from subduction to collision in eastern Taiwan
between January 1991 and March 2009. We systematically identified twenty swarms that have
more than twenty earthquakes (M < 4.3) occurring within one month interval and found that
eight out of twenty earthquake swarms located at a similar area and formed a specific seismic
zone, which is twelve kilometers long, three kilometers wide and having a depth range between
eight to twelve kilometers in the northern end of the Taiwan collision plate boundary. Eight
swarms occurred 1-48 days preceding eight nearby moderate-sized earthquakes (5.5 <M < 6.3)
within a radius of 40 kilometers. The accumulated moments of the preceding, seven out of
eight, swarms are inversely related to the time-separation between the precursory swarms and
the M > 5.5 earthquakes. A multiple asperity model may explain the earthquake preparatory
processes observed from the precursory swarms-mainshock sequences found at the collision
corner of eastern Taiwan. In this model, the Hualien space is composed of several asperities of
similar size but with different stress level, in which the precursory-swarm is located within
one of the asperities. As the tectonic stress increases, the smaller faults in the surrounding
weaker zone start to break as background small earthquakes. When the stresses continue to
increase, at some point, the swarms within the certain asperity start to break and in the mean
time, turn on the switch for the “stress-meter” approaching the strength of one of the
asperities. Following the empirical relationship between the accumulated seismic moments of
the preceding swarms and the time-separation between the precursory swarms and the M >
5.5 earthquakes, the more the seismic moment accumulated by the earthquake swarm, the
shorter the time we need to wait for the forthcoming M > 5.5 earthquake. Eventually one of
the asperities breaks as the tectonic stress continuing to increase. This ends one earthquake
cycle and starts a new one.
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Precursory swarms of moderate-sized earthquakes
an

au and Shih-Hung Hsu
Department of Earth Sciences, National Cheng Kung University, Taiwan

Space-time plot of seismicity for the Kurile Island
regions

Kanamori, 1981

Sequence of seismicity pattern predicted by the
asperity model

Kanamori, 1981

Where do we expect for having precursory swarms
for large earthquakes in Taiwan?

M=3° M=5.5 Kk

Is there any?




Earthquake bursts in Taiwan 1

* At least 40 events within a radius
of 6 km in 14 days.
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Time series for earthquake swarms in Hualien area
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Space-time plot of seismicity in north of Hualien
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Temporal variation of stress at a subfault
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*Eight clusters of M < 4.3 earthquake swarms (duration of 7-32 R | | e Total

days) occurred 1-48 days preceding 5.5 <M < 6.3 earthquakes Mo=1.8E+15

within a distance of ~40 km at the subduction-collision corner in
eastern Taiwan between 1991 and 2009

Distance (km

e T =27.2days

*The accumulated moments of the preceding, seven out of eight,
swarms are inversely related to the time-separation between the
precursory swarms and the M > 5.5 earthquakes

*The precursory swarms occurred in a clustered seismic zone
corresponding to the Bei-Pu structure mapped at the surface

pth (km)

*A multiple-asperity model may explain the earthquake
preparatory processes observed from the precursory swarms-
mainshock sequences found at the collision corner of eastern
Taiwan
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8™ Taiwan - Japan Workshop on Hydrological and
Geochemical Research for Earthquake Prediction

Dynamic strain variations and co-seismic groundwater level changes
associated with the August 2009 Suruga-bay earthquake (M6.5) observed at
the Tono area, Central Japan

Yasuhiro Asai and Hiroshi Ishii
Tono Research Institute of Earthquake Science, Association for the Development of Earthquake Prediction

Abstract

A moderate-size earthquake (MJMA 6.5) occurred at the Suruga-bay, central Japan at
05:07 (JST) on August 11, 2009. The dynamic strain variations and co-seismic groundwater
level changes associated with this earthquake were observed at Togari crustal activity borehole
observation (TGR350) site and Shizubora crustal activity borehole observation site (97FT-01,
SN-1 and SN-3) at Tono area, central Japan. The distance between two sites is approximately 3
km. The epicentral distance is 110 km.

We investigated the dynamic strain variations and the co-seismic groundwater level
changes observed at each observatory. The following results were obtained: At the TGR350,
observed co-seismic groundwater level change was caused by dynamic strain variations with
peak-to-peak amplitude of order of 10 strain, which exceeds the threshold value in TGR350
(Asai, 2008). The co-seismic groundwater level change is approximately a 3.8 m “increase”.
The increase is the same as earlier observation results (Asai, 2008). Unfortunately, the
co-seismic groundwater level changes after the peak is undergoing enormous hydrological
disturbance due to the excavation of Mizunami Underground Research Laboratory. At the SN-3,
at first, the approximately 0.4 m sudden decrease in groundwater level was observed, and after
the eleven hours, groundwater level decrease stopped and is increasing afterward. At the SN-1,
approximately 1 m slow decrease in groundwater level was observed, and after the eight days,
groundwater level started to increase. The observed co-seismic groundwater level changes in
SN-1 and SN-3 were also caused by dynamic strain variations in 97FT-01 with peak-to-peak
amplitude of order of 107 strain.

References
Asai, Y., 2008, Trigger and Mechanism of Co-seismic Groundwater Level Changes in the
Togari350 well, central Japan, in Proceedings of 6 Japan-Taiwan International Workshop
on Hydrological and Geochemical Research for Earthgauke Predicion, GSJ Openfile Report,
no.484, 1 CD-ROM, Geol. Surv. Japan, AIST.
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= Observations:

a) Dynamic strain variations and co-seismic groundwater level changes associated

with the August 2009 Suruga-bay earthquake (M6.5) observed at Tono region.

b) In case of other earthquakes: Earthquake (M6-7) which occurred before and
after Suruga-Bay earthquake, and the 2008 Sichuan, China Earthquake
(Mw7.9) etc.

Goal: To clarify whether the threshold values which cause the co-seismic
groundwater level changes in SN-1 and SN-3 exist or not.

*Summary

Borehole Array Observation System operated by TRIES

Shizubora site (SZB)

Modified from
Azuma et al.,(2007)

/ o ¢ A « s ;
R & g | NI Faul M Tono Tokyo 2
" < [l Region X
o : ¢ TH-7l == w{‘\@»
‘@BH-1 7 7 1 y : a
ey T (400m) % ; e % i :

Seismometers =

Tiltmeter
s

Ishii-type borehole
horizontal strainmeters

Thermometer

Modified from Asai et al., (2009, in press) |
Weight part
SN-1 and SN-3 are located within a distance of 100m.

TGR350 is located about 3 km southeast of Shizubora site.
The multi-component borehole instrument

installed at the bottom of TGR350 and 97FT-01

Co-seismic groundwater level (GWL) changes associated with the Suruga Bay Earthquake
(M;p146.5) observed at TGR350 SN-1, and SN-3

Suruga\-q’ay M,‘?.S
e 1m GWL

I 100 hPa

Atmospheric Pressure

Location map of the epicenters
(by JMA) and observation sites.

The epicentral distance is 110km.

* TGR350: The co-seismic GWL change (increase to 3.8 m) was observed,
but this changes is undergoing enormous hydrological
disturbance due to the excavation of Mizunami Underground
Research Laboratory which is located about 400m north of
TGR350.

*SN-3: Sudden decrease to 0.4 m during 11 hours and increase afterward.

*SN-1: Slow decrease to 1 m during 8 days and increase afterward




Hydroseismogram (Upper) and Dynamic strain variations (lower) associated with
the August 11, 2009 Suruga-bay earthquake (M;46.5; depth=23km) observed at
TGR350(left ) and Shizubora (97FT-01, SN-1, SN-3; ri

Groundwater Level and Strain changes in TGR350

e

TGR3S

97FT-0;

Amplitude [ Strain |
Amplitude [ Strain ]

97FT-01 N1,

2 530,
11 A0 E 11 Aug 2009

= Assuming plane strain, Areal, Max. Shear, and Principal strains were calculated
from the independent three-component strain data-set.
We focus on only the peak-to-peak amplitude of dynamic

strain variations.

Comparison of Dynamic strain variations (lower) and Hydroseismogram (upper) on
August 11, 2009 Suruga-Bay earthquake (M,6.5; depth=23

Groundwater Level and Strain changes in TGR350 Groundwater Level and Strain changes in SZB
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S

i
TGRS

.386 % 10
P Amp: 3.188: A 97FT-0,

TGR33q Ared
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3 TGR3S Shea}
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TGR330 Max{Prind.

578 10¢

°
°

.319 % 10"

Amplitude [ Strain ]
Amplitude [ Strain ]

.469 x 10-

9TFT-01 M

184x 10

s 530, S0 520 530, sa0
11 Aug 2009 11 Aug 2009

ismic GWL change was caused by dynamic strain variations (Areal and Max. Shear) with
peak -to-peak amplitude fer of 10-° str:
+ For the TGR350, these amplitudes exceeds the threshold value (3 X 10-7strain; Asai et al., 2008).

Dynamic strain variations (lower) and Hydroseismogram (upper) associated with the
August 9, 2009 earthquake (M26.9; depth=340km)

Groundwater Level and Strain changes in TGR350 Groundwater Level and Strain changes in SZB

125%107

9TFT-0] Areal

4
184 %107

°

Max Shear

Amplitude [ Strain ]

316 %

Amplitude [ Strain |

GR350 Max. Princ.

.298 X107

3.746 %
.491 X107

5606 -
1930 19:40 50 ono 2010
09 Kug 2009

19:40 19.50 ) 2030

0.0
09 Aug 2009

ain variations

(Areal and Max. Shear) with peak -to-peak amplitude of ay mately 10 strain.
*SN- mic GWL change (increase of 5 cm) was cause by dynamic strain variations with

peak -t
*SN-1: Co-seismic GWL change was not cause by dynamic strain variations.

Dynamic strain variations (lower) and Hydroseismogram (upper) associated with the
August 13, 2009 earthquake (My,6.5; depth=440km)

Groundwater Level and Strain changes in TGR350 Groundwater Level and Strain changes in SZB

600
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P
8

Amplitude [ milimeter ]
N W
88 8

mp: 1.763 x107

FT-01 Areal
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Max|Sheat

Ampiitude [ Strain ]
Amplitude [ Strain ]

x107

Masx. Prin.

-7
x10 FT-01 Max Princ.

107

x107

750 00, %10 520 7 750 00, 510
13 Aug 2009 13 Aug 2009

+TGR350: Although dynamic strain variations with peak -to-peak amplitude of approximately 2 X 107strain,
which exceeds the threshold value , no co-seismic GWL change was observed.
=SN-3 and SN-1: No co-seismic GWL change were observed.

For the TGR350, The case of during the co-seismic changes after the peak, we know dynamic strain
variations above threshold do not affect (Asai ,2008).




Co-seismic GWL changes associated with the May 8, 2008 off Ibaraki Earthquake
(Mw6.8 ;uses) and May, 12, 2008 Sichuan, China Earthquake (Mw7.9) observed at
TGR350 SN-1, and SN-3

01:45 (JST), 8 May: :15:28 (JST), 12 May
OFF Ibaraki Pref. (Mw6.8)} Sichuan,China (Mw7.9)

AR

SN-1 GWL

SN-3 GWL

UP
50 em GWL.

TGR350 GWL 50 hPa ATM.

(Asai et al, 2009)
d.
Sudden decrease of 0.18 m during 24 hours for off Ibaraki Eq. and 0.08m during 16 hours for Sichuan
respectively, and slow increases afterward.

Groundwater Level and Strain changes in TGR350 Groundwater Level and Strain changes in Shizubora
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the dynamic strain variations with peak
-to-peak amplitude of 2-3 X 10 strain.
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Modified from Asai et al., (2009)
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Groundwater Level and Strain changes in TGR350
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Groundwater Level and Strain changes in Shizubora
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At the SN-1 and SN-3, co-seismic GWL changes were caused by p-to-p Amp.
/e 6 X 1077 strain for Areal strain and 9 X 107 strain for Max.Shear strain

Does threshold value exist for SN-1 and SN-3 ?

In the case of the Sep. 11, 2008 off Tokachi earthquake (Mjy;47.1).

01:45 (JST), 8 Ma
OFF Ibaraki Pref. ( Mw6.8

W

SN-1 GWL

SN-3 GWL

ot

15:28 (JST), 12 May
Sichuan,China (Mw7.9)

up

50 em GWL
50 hPa ATM.

WA A

Mar.




ociated with Sep. 11, 20

kachi earthquake (M

Groundwater Level and Strain changes in SZB SN-1 and SN-3:
No co-seismic GWL change were cause by
dynamic strain variations with peak-to-peak

amplitude of approximately 1-2 X 107 strain.

3

3

5
]

@
8

In case of the May 8, 2008 off Ibaraki
earthquake (Mw6.8), co-seismic GWL
change were caused by dynamic strain
variations with peak -to-peak amplitude of
6-9 X 1077 strain for SN-1 and SN-3.

Amplitude [ milimeter ]

3

)

0] Vi Shen between 1-2 X 1077 strain and 6-9 X 107 strain °

0 J Does threshold value exist

Amplitude [ Strain |

107

However, we haven’t investigated of all
The detailed investigation of the threshold value is
future studies.

10

9:20 9:30 9:40
11 Sep 2008

Co-seismic groundwater level changes and dynamic strain variations associated with
the August 8 Suruga-bay earthquake (M;y;,6.5) were observed at TGR350 site and
Shizubora site (97FT-01, SN-1 and SN-3) at Tono area, central Japan.
2. We investigated the dynamic strain variations and the co-seismic groundwater level
changes observed at each observatory. The following results were obtained:

a) At the TGR350, observed co-seismic groundwater level change was caused by
namic strain variations with peak-to-peak amplitude of order of 10-° strain,

which exceeds the threshold value in TGR350 (Asai, 2008).

The observed co-seismic groundwater level changes in SN-1 and SN-3 were also

Preliminary investigation shows that the threshold value exist between
approximately 2 X 10”7 and 6 X 1077 strain .
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Geological, seismological, tsunami and folklore studies related to giant
earthquakes along the Ryukyu trench

Masataka Ando, Cheng-Horng Lin and Yoko Tu
Institute of Earth Sciences, Academia Sinica, Taiwan

Abstract

The size of subduction earthquakes has been considered to be mainly dependent on
convergence rate and age of the subducting lithosphere. Giant earthquakes with a magnitude
over 9.0 can occur at a high convergence rate and young oceanic lithosphere. Regarding the
subduction zone along Ryukyu Islands, it is widely believed that a giant earthquake is
implausible to occur in this region because it does not have the above characteristics. In
addition, the rifting along the Okinawa trough located behind the Ryukyu trench, implies
that this subduction boundary can be aseismic without any significant earthquakes.

However, a possible simultaneous uplift of the coastal terraces along the subduction
zone of the Ryukyu trench could be associated with giant or large earthquakes. Based on the
age of uplifted terraces, the simultaneous uplift could have occurred 3000 BP over the entire
subduction zone of a length 1,500km and maybe associated with an extraordinary
earthquake of Mw>9.0 (Furumoto and Ando, 2009). Study of tsunami sediment can yield
evidence if a giant earthquake had affected this region.

On the other hand, a large tsunami has never been considered to strike the east cost of
Taiwan due to its surrounding tectonics and bathymetries, despite its proximity to Ryukyu
trench. Moreover, it is worthy to note that there is a place called “Marauro” located at the
center of the present Chengong city on Taiwan’s east coast. In one of Ami tribe’s folklores
indicated “big sea waves struck the area, plants and trees all perished, and the place was
named Marauro”, which means withered place. To check if such folklore has a basis,
collection of soil samples and numerical simulation for tsunamis would be required to
estimate both the location and fault mechanism of the tsunami source in conjunction with
giant earthquakes along the Ryukyu trench.

In the western Ryukyu subduction, very low frequency earthquakes (M2.5-M4.5) have
been found near the trench axis with thrust mechanisms (Tu et al., 2009). In addition, slow
slips have been also found at depths around 40-50 km (Heki and Kataoka, 2008; Nakamura,
2009). These features are quite similar to the Nankai trough where large thrust earthquakes
have occurred in history.

With the possibility of giant earthquakes in Ryukyu region as indicated by scientific
evidence coupled with legends, this study highlights the importance of integrated studies of
emergent marine terraces, seismological information, tsunami numerical simulation, and
together with folklores that could most probably been based on real episode.
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A question on the Ryukyu subduction:

Are the two plates coupled?

|

Potential site for future large earthquakes. ?

Mode of subduction

Is the Ryukyu subduction of the Mariana type ?

Marian type Chilean type

Low frequency earthquakes

Slow slips

Seafloor geodetic survey
Emerged coastal terraces
Folklores and tsunami sediments

Uyeda and Kanamori (1979)




2. Low frequency earthquakes

Tu et al. (2009)

Very low frequency earthquakes
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Very low

frequency earthquakes along the Ryukyu trench
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Summary of slow slips and very
frequency earthquakes

it Heki & Kataoka
Nakamura 2008, T=10.5

2009 Vs
T=6 yrs

Tu et al. (2009)

Slow earthquake or slow events

Slow Earthquake Families in Nankai Zone

Shallow Very Low Frequency Eq (S-VLFE) | Seismic slip in accreticnary prism
Short-term Slow Slip Event (S-SSE) | Aseismic stick-slip on the plate boundary

Seismic slip of small patch
Deep Very Low Frequency Eq (D-VLFE) on S-SSE fault plane

: Micro crack failure
| Deep Low Frequency Tremor around S-SSE

Shallow VLFE .
il Ultra-low frequency
earthquakes near the

convergence boundary

Obara (2005)

3. Seafloor geodetic survey
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Seafloor horizontal displacements
between Jan 2008 and July 2009

We need more seafloor
geodetic sites!
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4. Emerged coastal terraces

Emerged notches and uplift terraces
- Evidence for giant or large earthquakes?
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Did tsunamis struck the east coast of Taiwan

Giant earthquake in the past?

2+ Simultaneous uplifts occurred several times over the
entire subduction zone, associated with large _
earthquakes and tsunamis. Alegend of Ami tribe says that “rice plants and trees were

all died by the struck of big waves in 1850’s”. If it was really

a tsunami, its height would have been >20-30m.

Another example is found in Chenggong County (A Zh$E)

Chenggong
harbor

Che‘_n_gi'_g&h'g

///Propagation of tsunami from a source in the
westernmost part of the Ryukyu trench
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Auguring for finding tsunami Subduction zone east of
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Summary

In the western Ryukyu subduction, very low frequency
earthquakes (M2.5-M4.5) were found near the trench axis with
thrust mechanisms.

Slow slips were found at depths around 40-50 km.

A possible simultaneous uplift of the coastal could have
been associated with giant or large earthquakes.

Further extensive geodetic surveys are necessary over the
entire Ryukyu trench.

Study of tsunami sediments can yield evidence if a giant
earthquake had affected this region.

The importance of integrated studies of emergent marine
terraces, seismological information, geodetic survey,
tsunami numerical simulation, and together with folklores

o o Ryubkyu Trench
were shown in this study. _— yukyu Trene

/
Nakamura, GRL (2009)




Ryukyu trench
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Modeling and Scaling of Earthquakes in Taiwan region

Kuo-Fong Ma and Ying-Tung Yen
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Abstract

We investigated the finite-fault source model inferred from waveform inversion
to explore the scaling relations between moment and source parameters, which
include fault length, fault width, mean slip. The spatial slip distributions of 19 events
derived from the dense strong motion stations in Taiwan and the Global
Seismographic Network were determined to give the finite-fault solution for the
moment ranged from 7.8 x 10" to 3.8 x 10%° N-m. In addition to the 1999 Chi-Chi
Mw7.6 earthquake, there are 10 blind thrust events, one normal event and seven
strike-slip events. Among them, there are three subduction zone events. The M8.0
2008 Wenchuan earthquake, M9.1 2004 Sumatra earthquake and M7.6 2001 Bhuj
earthquake were also included as the reference events in the scaling to provide
broader scales for large earthquakes. The asperities in a finite-fault were lack of
quantitative definition, and the dimensions of the finite-fault geometry were often
overestimated due to the slip heterogeneity. The subjective definition of asperity for
earthquakes leads to a less accurate scaling relationship for the source models. A
mathematic method in which the autocorrelation function defined from quantifying
spatial slips was utilized to evaluate the effective fault dimensions to systemically
redefine the characteristics of the source parameters, including effective fault length
(Le), width (We) and average slip (De). Our analysis shows two scaling relationships
for MO o Le~2 and M0 o We~2.5. Effective length to width scaling behavior has a
slope of Le o« We. This relationship might reflect the character for collision zone
earthquakes, which events commonly from blind thrusts with deeper focal depths.
Thus, this source scaling might provide additional information for further studies on
the simulation of ground motion for earthquakes from the tectonic collision zone. This
scaling relationship is useful for further determination for understanding of the stress
pattern and investigation on the earthquake related physical process.

In addition to the earthquake mechanism and the corresponding distribution on
slips, an in-situ fault zone borehole seismometers had been installed at the depth arnge
from 950m to 1300m across the recent ruptured Chelungpu fault. We observed the
events showing the distinct P-wave without S-wave. These distinct P-wave only
events had been observed continuously through time. The events in the same group
are almost identical in P-waves, but with slightly difference in pulse width. It suggests
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the events in the same group have similar mechanisms, but with different source
dimension and stress drop. The characteristics of the events from waveform
observations suggest these events are repeatable from different locations. The
modeling of the observed waveforms suggested these events are from an irotropic
source in the depth range of about 1300m to 1500m, and within 150-500m
horizontal to the TCDP BHS site. The modeling for the isotropic source gives the
synthetics with distinct P-wave without S-wave with satisfactory explanation to the
observed waveforms. It suggests that these events might be resulted from a hydraulic
fracturing within the fault zone. The behavior of this fluid associated mechanism
might play a role to present the status of the stress transition after a large earthquake.
And, the observation of these fluid associated events provides the hint to the
involvement of fluid in earthquake nucleation.
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Kinematic Modeling

Finite fault
Approximation

UL R) = 33 D, 005, VAL, %) +SinG )Y L1, 0]+ S,

ik

Dy Slip amplitude

Ay Rake angle

S, ® Derivative of rise time function
t Rupture initiation time

Y, tt,%)  Subfault Green’s functions

Inversion procedure

»  For each subfault, we invert
for the slip amplitude, rake
angle, rupture time, and
shape of a simplified rise
time.

* A wavelet transform method
is applied to build up the
objective function in order to
extract more information
from seismic data.

» Athreshold least square root
criteria is used for static
measurements

* A Simulated Annealing
method is applied to search
for the global optimal
solution.

(Ma et al., 2002, Ji et al., 2004, Lee et al., 2006)
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Scaling relationship of source parameters
(fault length, fault width and mean slip)

- underlying mechanics of the rupture process
- nature of tectonic setting

- implication in the seisimic-hazard analysis

- prediction of strong-ground motion

How to evaluate
- surface rupture
- aftershock distribution

- waveform inversion or geodetic modeling

For large strike-slip earthquakes, seismogenic layer is the constant maximum.

W-model o if stress drop is constant,
Ao =Cu— slip is proportional to the width
Moment is proportional to the length
M :A_O' LW 2 (Romanowicz, 1992)
°C
L-model u if stress drop is constant,
Ao =Cu-— moment is proportional to the square
of length
Ao,
M, =—LW (Scholz, 1982; Pegler&Das, 1996;
C Wang&Ou, 1998; Stock&Smith, 2000

For small earthquakes

M, = uLWD %V :const.,% =

Shimazaki, 1986)

const. M, oc L, Mjoc W3, M, oc D

(Mai&Beroza, 2000; Stock&Smith, 2000; Shimazaki, 1986 )

The data in Taiwan region since”éL993
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Characterizing of slip model dimension
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u: the order of grids along
strike direction

D : the slip of each grid

N : the number of grids
along dip direction

W; : subfault length

W : fault width

(Bracewell, 1986; Mai and Beroza, 2000)
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Definition of effective fault dimensions

ChiChi 19990921 (M7.7)

20080512 (M8.0)

Taiwan data set + 3 constraints (Sumatra&Wenchuan&Bhuj)

Fault Length vs. Moment

Fault Width vs. Moment

Mean Slip vs. Moment
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Prediction from scaling relation

Estimation from slip model

Scaling Relationship of D, vs. L, & D, vs. W,
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- Uncertainty of mean slip - s . . . Seismogenic layer in Taiwan collision zone
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Summary

. The seismogenic depth controls the pattern of the rupture scaling.

Adopting of the source scaling relationship should consider the
setting of the tectonic environment.

. Mean slip has a constant trend with increasing seismic moment in the

range of 1016 to 10195 Nm. For large dip-slip events, when the ruptured
length larger than the seismogenic thickness, the mean slip becomes
proportional to the seismic moment.

. The earthquake rupture could be two dimensional (Width and Length),

while the ruptured was within the seismogenic depth as 30km in
Taiwan collision zone.

. For events within the seismogenic zone (M4.6 to M6.6), the stress drop

is not constant, thus, is non-self-similar scaling.

. While the large events with ruptured length greater than the

seismogenic depth, the earthquake follow self-similar scaling.
However, it does not apply to deeper subduction zone events, where
the width can extend to deeper depth along the slab.

Stress Drops

logA, (km?)

Large Stress Drops

M4-5, Events from lower crust
in Western Foothills

22 23 24 25 26 27 28 29

logM, (dyne—cm)

Thank you for your attention.




Taiwan data set only —
The values of scaling relation using the ordinary least-squares method

logiLg) (km)
- o - N W

log(Le) (km}

L E = oo

log(Le) (km)

L = e e

log(Y)=a+ Slope standard Intercept standard Correlation standard
b*log(X) error error coefficient | deviation
Y X b [N a o, R? o,
All event
L, M, 0.49 0.04 -7.95 0.64 0.91 0.19
W, M, 0.42 0.04 -6.59 0.72 0.85 0.21
D, M, 0.09 0.07 0.06 1.32 0.07 0.39
Dip event
L, M, 0.46 0.05 -7.25 0.90 0.88 0.19
W, M, 0.40 0.06 -6.26 1.08 0.79 0.23
D, M, 0.14 0.11 -0.96 1.94 0.13 0.41
Strike event
L, M, 0.51 0.05 -8.36 0.97 0.94 0.19
W, M, 0.42 0.06 -6.65 1.04 0.90 0.20
D, M, 0.07 0.11 0.54 1.89 0.07 0.37
Taiwan data set only — (Mai and Bezora, 2000) slope 1/3

Scaling relation

Fault Length vs. Moment

Fault Width va. Moment

OLS regression

Mean Slip vs. Moment
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Interplate coupling and slow slip events in the Ryukyu Trench

Mamoru Nakamura
University of the Ryukyus

Abstract

Historically, interplate earthquakes have not been observed and the interplate
coupling is assumed to be weak in the Ryukyu Trench. However, numerical
simulation of tsunami, global positioning system (GPS) measurement, and
observation of ocean-bottom crustal movement inform the state of inter-plate coupling
in the Ryukyu trench. These results provide that the interplate coupling is locally
strong at the shallower and deeper part of the Ryukyu subduction zone.

Slow slip event beneath Yonaguni Island. Anomalous crustal deformation
following the Mw = 7.1, March 31, 2002, Hualien earthquake was observed over 5
years using the GPS network in the south Ryukyu Islands. The analysis showed an
afterslip event at a depth of 30 km on the subducting Philippine Sea plate. The
magnitude of the cumulative moment reached 7.4. The afterslip promoted Coulomb
failure stress on the fault of the repeating slow slip events (SSES) in the vicinity of the
afterslip, which accelerated the slip rate of the SSEs after the earthquake.

Interplate coupling in the shallow part of the Ryukyu Trench. The 1771
Yaeyama earthquake generated a large tsunami with a maximum runup of 30 m,
causing significant damage in south Ryukyu, Japan, despite the weak ground shaking.
The result of numerical simulation indicates that the source fault of the tsunami is
very close to the Ryukyu Trench. The 1771 Yaeyama tsunami was caused by a
tsunami earthquake (Mw = 8.0) that occurred in the subducted sediments beneath the
accretionary wedge. Thus suggests that the shallow part of the south Ryukyu Trench is
coupled.

Anomalous crustal movement in the central Ryukyu Trench. Ocean bottom
benchmark system was set at about 35 km landward from the axis of the central
Ryukyu trench to detect the crustal deformation by the interplate coupling between
the Philippine Sea plate and the Eurasian plate. A set of three acoustic transponders
has been installed on the seafloor, at a depth of about 2900m. Four campaign
observations were carried out for the period from January 2008 to May 2009. The
RMS of the travel time residuals for each campaign analysis is about 60
micro-seconds. For two years observation, difference of positions between February
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2008 and July 2008 epochs indicates an easterly movement of about 11 cm. We
assumed that the 25 cm thrust-slip occurred on the subducted Philippine Sea plate
beneath the benchmark. The shallow part of the interplate boundary near the Ryukyu
Trench axis is locally coupled, and causes the aseismic slip event.
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Interplate coupling and slow slip
events along the Ryukyu Trench

Mamoru Nakamura (Univ. Ryukyus)

Historical large earthquakes in the
Ryukyu trench (1700-2007)

Thrust-type large earthquakes:
no records for 300 years (?)

Damaged earthquakes in
Ryukyu
1771 Yaeyama tsunami (M7.4)

1911 Kikaijima earthquake (M8.0)
(Philippine Sea plate: intra-plate)
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GPS velocity field in the Ryukyu arc

Southward movement of Ryukyu Islands:
Weak inter-seismic coupling (?)
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GPS horizontal velocity
(GSI, 1997-2006)
Tsushima is fixed

Afterslip (or slow slip event) beneath the Yonaguni Island
(Nakamura, 2009a)

Two large earthquakes (Mw>7.0) from Dec. 2001 to Mar. 2002.

Slow-slip event (Heki & Kataoka,2008)

Yonaguni Island
_100km

24° 0

Mar. 31, 2002
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De-trende.d GES (GST) data _— Fault model of the Yonaguni afterslip
Subtract linear, annual, and coseismic components
Anomalous trend after Apr. 2002
Duration of SSE: 5 years

Grid-search method
Period: Jul. 2002-Jul.2008
Horizontal and vertical displacements
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Ryukyu Trench

Horizontal motion of the Yaeyama region

Yonaguni Afterslip

(Jul.2002-Jul.2008)

Total Horizontal displacement
max. 5cm (ESE direction) at Yonaguni and Hateruma

1. Long duration (5 years)
2. Cumulative moment exceeds that of the mainshock.
3. The fault of the afterslip is far from the mainshock

fault.

Different from usual afterslips
duration: ~1 year
close to the mainshock fault.




The afterslip changed the slip rate of the Iriomote SSE.

1

10.7 £ 0.2 cm/yr

12.7 + 0.4 cm/yr

BLIE S Slip rate increased :
St T T 19%
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Cumulative slip of the Iriomote SSE
cumulative slip (cm)
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1998 2000 2002 2004 2006 2008
Time (yr)

Estimation of slip rate change through Coulomb
failure stress model

Stress drop of the Iriomote SSE: 13% increase in slip rate
34 kPa = (9 kPa/yr)/(34 kPa*Z)
Average Coulomb failure stress
change: 45 kPa (=9 kPa/yr)
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Observed increase in sllp rate : 19%
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Observation of Ocean Bottom Crustal Deformation in the
central Ryukyu trench
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Ocean-bottom crustal deformation measurement in the
central Ryukyu trench

Benchmarks
35km land-side from Ryukyu Trench
interval: 2km

Reference of GPS
Univ. Ryukyus
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Fault model of the aseismic slip

Fault
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Depth =5 km
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Mw = 6.5




Induced earthquake swarm by the aseismic slip

ACFS by the aseismic slip
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The 1771 Yaeyama earthquake was a tsunami
earthquake

|I| population 1000

l runup height 10m

(Nakamura, 2009b)
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Tsunami runup heights (bars) and population change between before
and after the Yaeyama Tsunami.

Fault model of the 1771 Yaeyama earthquake

" Miyako Islands
IRB (12 mé° .

DTRM (20 m)

T*MYK (10 m)

Previous source model of the 1771
Yaeyama earthquake
A: Intraplate Eq. & landslide

(Imamura et al., 2001)
B: Intraplate Eq. (Nakamura, 2006)

Possibility of interplate
earthquake?

Fault length: 150km
Fault width: 30, 50, 100 km

-

Calculate maximum runup

-

Compare the observed runup
heights with calculated
heights at coast.




Observed runup heights and calculated wave heights

@ Observed heights
—— W= 30km
—— W= 50km

W =100 km

W
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Fault model of the Yaeyama earthquake

length: 150 km

strike: 255°

[ \{ top depth: 5 km)|
A slip: 16 m

Source fault:
near the Ryukyu Trench

Seismic intensity:

weak ( <5 in JMA scale)

Tsunami earthquake

Tsunami earthquakes in the world
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Satake & Tanioka (1999)

Conclusions: Interplate coupling along the Ryukyu subduction zone

Deep part of the Ryukyu Trench: Slow-slip events and aftersli

A: Heki & Kataoka (2008, JGR)
B: Nakamura (2009a, GRL)

Shallow part of the Ryukyu Trench: Slow-slip event and Tsunami earthquake

C: Nakamura et al. (2009)
D: Nakamura (2009b, GRL)
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Abstract

The Longitudinal Valley fault (LVF) displays both creeping and locked segments
and has produced moderate to large earthquakes. Because, the boundary between
creeping and locked segments accumulates strain, it is the asperity on the fault. In this
area, it is important to comprehend the slip deficit rate distribution on the fault at
depth. And long term deformation which consists of interseismic and coseismic
deformation is estimate by tectonic geomorphology. We can probably predict the
behavior of the huge earthquake by the comparison of the estimated deformation by
Leveling survey with the long term deformation pattern. Yuli is located around the
boundary between creeping and locked segments. We had a leveling survey to focus
to deform the surface across the LVF around Yuli.

Large earthquake commonly occur in eastern Taiwan along the Longitudinal
Valley due to the vigorous arc-continental collision between Philippine Sea Plate and
Eurasian Plate with a converging rate 85 mm/yr (Yu et al., 1997). The 150 km long,
NNE-SSW trending, Longitudinal Valley in eastern Taiwan separates two quite
different geologic provinces: the Central Range which is composed of the pre-Tertiary
metamorphic to the west and the Coastal Range which consists of Neogene andesitic
volcanic units, turbidite sediments and mélange to the east. A major discontinuity of
about 35 mm/yr on the rate of crustal shortening across the Longitudinal Valley is
attributed to inter seismic slip of the LVF (YU et al., 2001). The Longitudinal Valley
fault (LVVF) runs along the eastern rim of the valley and an east-dipping reverse fault.
The Chieshan segment (south segment of the LVF) is creeping and show a horizontal
shortening of 17-19 mm/yr by creepmeter (Lee et al, 2001). The LVF is east dipping
reverse fault has built the Coastal Range. The long term vertical slip rate is 28 mm/yr
(Chu, 2007) at western rim and 7-8 mm/yr (Hsieh and Rau, 2009) at eastern rim of the
Coastal Range.
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We established about 30km leveling route from Yuli to Changbin to detect the
vertical deformation in detail. The installation interval of benchmarks near the fault
area is about 100 m. Others were installed every about 300m along the road. The
precise leveling surveys were conducted in August 2008 and August 2009, and we
measured with DNAO3 Digital Leveland Invar Staff with Bar Code by Leica Co.
owned by Institute of earth Science, Academia Sinica.

The overview of the deformation detected in the period from 2008 to 2009 is as
follows. It was detected about 2.7 cm uplift, referred to the west end of our route, at
about 2km region across the fault. The vertical displacement in 200m through the LVF
is 1.7 cm. Uplift was gradually-reduced with the distance from the fault, and was 1.5
cm at the east coast. In the observation period, there is no significant earthquake in
Yuli fault. It suggests the detected deformation as a cause for the creep motion of the
Yuli fault.

The deformation pattern for a year is characterized by a pop-up structure as the
highest uplift is located near the fault on hanging wall side. I can think of two reasons.
One is the slip increase on the fault with depth. Another is the fault geometry become
gentle in subsurface. A lot of tectonic bulges are noted in Fuli area which is located at
south of Yuli town. These bulges have been controlled by fault geometry. Therefore,
we propose that the deformed surface for a year on the fault tip is also driven by
changed fault geometry.
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Abstract

Longitudinal valley faults in eastern Taiwan are commonly considered collision
boundary between the Eurasian plate and Philippine sea plate. Yuili fault, one of the
active segments of the longitudinal valley faults, is reverse fault with east dip.

We established about 30km leveling route from Yuli to Changbin to detect the
vertical deformation in detail (Murase et al. 2009). The installation interval of
benchmarks near the fault area is about 100 m. Others were installed every about
300m. Compared to the 2km installation interval of the Geological Survey Institute,
Japan for making the map, installation interval of our survey is dense. The precise
leveling surveys were conducted in August 2008 and August 2009.

The overview of the deformation detected in the period from 2008 to 2009 is as
follows. It was detected about 2.7 cm uplift, referred to the west end of our route, at
about 2km region across the fault. Uplift was gradually-reduced with the distance
from the fault, and was 1.5 cm at the east coast. In the observation period, there is no
significant earthquake in Yuli fault. It suggests the detected deformation as a cause for
the creep motion of the Yuli fault.

Mathuta et al. (2009, this WS) will discuss the comparison of the deformation
between geological term and geodetic term across the Yuli fault using the dense
leveling data. It's an object of this survey to understand not only this but the overall
behavior of the Yuli fault. In this presentation, we discuss the creep distribution of
Yuli fault.

We adopted a two-dimensional reverse fault model to estimate the creep
distribution. As candidates for the source models, we assumed a model with four
types of fault model. The geometry of the faults was optimized using the genetic
algorithm in order to conform to the leveling data. The goodness of the fit of the four
examined models is determined on the basis of Akaike's information criteria (AIC).
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The model with two faults was selected as the optimal model from the candidate
models.

From our result, it is suggested that the creeping area is shallower than about
10km.

Reference

M. Murase, N. Matsuta, J. J. Lin> H. C. Pu> W. S. Chen and C. H. Lin (2009), Precise
Leveling Survey at the Yuli fault, Southeast Taiwan, Proceedings of the institute
of natural sciences, Nihon university, 44, 159-166 (in Japanese with English
abstract).
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BOREHOLE STRAIN AND GPS STRAIN IN
EASTERN TAIWAN

Chiching Liu
Inst. Earth Sciences, Academia Sinica

Abstract

Dense deployed borehole strainmeter networks have been setup in some fast
deformed areas in Taiwan; some of them have been stabilized and get rid of the
borehole relaxation effects. Tectonic related signals in strainmeter data can be
interpreted with other geophysical observations, especially with GPS. Baseline
changes and relative site displacements from GPS observations usually interpreted as
local crustal strain based on the uniform strain or locked-fault deformation
assumption. Fault patch creeping, silent earthquakes, slow earthquake and some
micro- earthquakes can break this assumption, and mislead to a false interpretation.
Borehole strainmeter data among GPS network can help to identify the real strain
accumulation or just a block motion displacement between GPS sites. These two
different cases can lead to completely opposite interpretation — increasing or
decreasing in seismic risk.

For a strainmeter network (3 stations, RNT, RST and ECT) near a reservoir in
southern-west Taiwan, the orientations of major strain axis of all 3 sites keep stable
during 2004 and 2006.5 ~ 2007.5, but experienced a rotation of 90 degree during
2005 ~ 2006.5. These occurred on all 3 stations, and probably a process of the
exchange of the direction of major and minor strain axis.

Permanent GPS observations over the same area are used to perform the strain
daily time series, either in linear strain, areal strain and orientation of principal strain
axes format, can be compared with the borehole strainmeter observations. Strainmeter
data showed slower strain accumulation than the GPS strain during 2004 while
several slow events occurred, and keep similar accumulating rate during 2005-2007.
GPS strain shows consistency and inconsistency with borehole strain. The slow
events showed in borehole strainmeter data may play an important role.

Strainmeter data at several sites in west Taiwan also experience a train drop
during the surface wave arrival of Wen Chuan earthquake (M=7.9) in May 12, 2008.
Areal strain in these sites were increased up to 0.1 pstrain during surface wave
passage. We are still looking for some proper interpretations.
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Structure of long-term sealing in the fault zone during aseismic
period — examples from the Chelungpu fault in Taiwan

Kuniyo Kawabata and Kuo Fong Ma
National Central University

Abstract

Earthquakes occur repeatedly with certain time intervals on same fault. Such
earthquake recurrence is explained by the strain buildup and release hypothesis (Reid,
1910), which leads to the concept of seismic cycle. To buildup the stain, it is required
that fault zones strengthen between earthquakes. The strength of fault is recovered
with porosity decrease by mechano-chemical processes: (i) Rapid deposition of
minerals in cracks and pores; (ii) Mineral sealing in cracks and pores; and (iii)
Pressure solution (e.g. Boullier et al 2004; Tanaka et al., 2007; Kawabata et al., 2007).
It appears that rapid deposition occurs simultaneously with slip/fracture of rock,
which are inferred by the texture of floating fragments suggesting that fragments were
supported by surround depositional minerals before it were sank. Mineral sealing
occurs mainly in a breccia zone by fluid infiltration through aseismic period. Pressure
solution is the creep mechanisms consist of three basic processes of dissolution,
transfer and deposition, and occurs through aseismic period. These processes are
promoted under presence of water and cause mass transfer. These processes change
properties in fault zone by mass transfer as well as healing fault zone. Healing and the
relevant material changes in fault zone play a key role in evolution of a fault and
estimating the earthquake cycle.

Chelungpu fault is the active fault occurred big earthquake (magnitude 7.7) in
Chi-Chi Taiwan, in 1999. Taiwan Chelungpu fault Drilling project (TCDP) drilled two
vertical holes (hole A and B) and one side-track hole from hole B (hole C). Pressure
solution has been observed in drilled samples from hole B through the Chelungpu
fault (Boullier et al 2004; Gratier and Gueydan, 2007). Rapid deposition of
nano-scaled quartz grains has reported in samples recovered from drilled hole C
penetrated to Chelungpu fault (Ma et al., 2006; Tanaka and Ma, 2007 AGU abstract).
This sample from hole C keep whole structures including a primary slip zone and
other old slip zones. The observation of each slip zone enables us to infer history of
faulting and healing of the Chelungpu fault. We will present the evolution of the
Chelungpu fault by micro structural observation focusing on sealing structures using
the samples from hole C.
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Semi-continuous groundwater gas monitoring system at Kashima
observatory

F. Tsunomori
Laboratory of Earthquake Chemistry, Graduate School of Science, The University of Tokyo

Abstract

Dissolved gas concentration in groundwater must be an indicator of stress state
of a fractured aquifer adjacent to an active fault. Radon and methane concentration are
especially important species, and it is essential to compare gas concentration changes
with permeability changes for reliable development of geochemical earthquake
prediction. We propose a semi-continuous groundwater gas monitoring system in
order to record absolute values of gas concentration with the permeability of the
aquifer. In addition, preliminary results measured at Kashima and Kamakura

observatories are presented.
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The 3.5 % vapor phase volume relative to initial pore volume
was induced by volumetric strain change before the earthquake.

Radon anomaly was well-explained by the vapor-liquid partitioning model.

Hypotheses and Tasks

» A brittle block in a ductile region near a fault might be a
potential field for seismo-chemical monitoring.

— A sensitive point “Tsubo” might be a borehole drilled in such a
potential field.

» Corroborative data of the vapor-liquid partitioning of
radon should be acquired by a parallel monitoring at a
sensitive filed.

— Hydraulic conductivity (transmissibility)
» provides direct information of pore volume.
— Helium, argon, methane and nitrogen
* behave in the same way as radon.
— Electric conductivity (ion concentration)
+ indicates direct information of microcrack generation




Challenges in Chemical Monitoring

* Groundwater must be pumped for sampling in
most wells.
— Pumping changes groundwater level.

— It is difficult to pump groundwater in a precise and low
rate by a common pump.

» Gas analyzer must be customized for a long-
running monitoring.
— Gas extraction efficiency should get high to get exact
concentration.

— Automated calibration system must be required
because sensitivity of a detector gradually decreases.

Pumping Test at Kashima (KSM)
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@ Flow control valve
@ Turbine pump
® Relief valve

Results for Continuous Pumping

« Continuous pumping ...
— does not disturb a tidal response of
groundwater level according to FFT analysis.

— It is difficult to discriminate an effect of slight
misalignment of the pumping rate from a trend
change of groundwater level.

* An actual lifetime of a tube is about 1.5
months.

— It is shorter than guaranteed lifetime of 3
months.

Water Level Change
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Water Level Recovery
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Hydraulic conductivity is calculated on the basis of Jacob analysis

Results for Intermittent Sampling

* Intermittent sampling ...
— realizes hourly monitoring of hydraulic conductivity.

— provides an enough water volume (1184 mL/min) for
a dissolved gas analysis by a QMS.

* A tube of a tubing pump was broken in 3 days.
— A tubing pump is useful only for a laboratory

experiment. No commercial ¢

for our purpose. i’j‘;}
— We are going to apply an imr /

pumping and sampling. s ;

Active Monitoring of Hydraulic Conductivity
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Gas Analysis by QMS

Sunset in Tainan




Automated Calibration and Purification

[ Capillary Block O Electro-magnetic Valve
1 Tygon Tube O Electro-magnetic Relief Valve
I Ulra-Tol (O Manual vaive

I CF34 Flange

Chemical Monitoring Project in Taiwan

My best friends

Preliminary Records at KMK
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Crustal Movement in Taiwan

1995-2005
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(Lin et al., 2008)

| 25-75 mm/yr
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(Prof. Hu presented, in 2008 WS @ GSJ)




Summaries

* The vapor-liquid partitioning model is the most
qualified candidate for explaining seismo-
chemical anomalies.

« The intermittent sampling enables us to monitor
the hydraulic conductivity of an aquifer with gas
concentration changes dissolved in groundwater.

» Southwest region, especially Tainan area, is the
most adequate field for the seismo-chemical
groundwater monitoring in Taiwan.

Thank you very much for your attention!

Theis Solution

} Jacob Analysis
h(U)=i(—0.5772—lnu+i(_1)‘+1u_iJ yo TS
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Jacob Solution
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Power Spectrum Density

FFT
5 K1
o1 M2
4+ " s2
g |
kel
2 3
£
xE
g
1 |-
0]
(] 0.02 0.04 0.06 0.08 0.1
Frequency [h1]
(o) K1 M2 S2
Interval [h] 25.82 [23.93 |12.42 |12.00
KSM 2592 |23.92 |12.44 |11.96

Power {{mlimin)Zhour)

MEM

Fﬂu—- JL R S S S B S R

M.
0 2

K Sa

Mg

Frequency (cycles/day)

Tohjima et al. (1994)

Radon concentration { Bl

//\.I 7

= /

/94
hY
.

3

:

¢
G‘-!'i!:__.f% .___i
o ¥

1

L
h 4w A
* Tm
s . E [ L . 4
20 4 - [ (1]
[ ]
-
A
. M 6§ carthguake
104
o4 . v ! v v
12003 9-1-2003 11-1-2003 1-1-2004 3o 12004 Se1-2004

Fig. 3. Radon concentration data at the monitoring well (X1} in the Antung hot spring.
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Challenges in Chemical Monitoring

* An appropriate volume of groundwater must be
sampled for a dissolved gas analysis.
— For mass spectrometry, a few cm? water is enough.
On the other hand, 1000 cm? water is required for gas

chromatography.
» Gas concentration in saturated water is about 0.05 cm3-STP/

cms.

* 0.001 cm3-STP gas is needed for a mass spectrometry, and
50 cm?3-STP for a gas chromatography.

Tidal Response of Flow Rate

GROUND'WATER
Fp—

f

ELECTRONIC BALANCE

Fig. 3. Schematic dagram of the flow rale measuring apparatus. The ground-
waler s introduced into & vessel on an electronic balsnce and is weighed svery
minule. When the vessel becomes filled with water, it tips around 4 fulcrum.
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Fig. 5. Temporal variation in flow rate at the KSM well: bourly averaged data
{top) and 4-h moving averaged data (middle) together with theoretical tidal
volumetric strain changes (bottom).
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Faults and Tectonic Model of Taiwan
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(Prof. Hu presented, in 2008 WS @ GSJ)

Uranium Decay Series

Element Decay | Half Life Energy /MeV
| 2] a 4.468x10°y
2| il B 24.10d
3 1 234mRg B 1.17 m
4 | 284U a 2.455x10%y
GRSIE2S0Tih a 7.538x10%y
6 | ?5Ra a 1.600x10% y
7 | ?*2Rn a 3.824d
8 | 2'8Po (RaA) a 3.10 m
9 |21Pb (RaB) B |26.8m
10 | 2"“Bi (RaC) B 19.9m
11 | 214Po (RaC’) a 1.643x10" s

12 | 219Pp (RaD) B | 223y
13 | 219Bi (RaE) B |5.013d
14 | 2'°Po (RaF) a 138.4d
15 | 2%Pb (RaG) w

Vapor-Liquid Partitioning Model

Rn concentration
in groundwater
declines

.

Gas phase is Radon gas must
generated by the move to gas
pore volume phase according
increase due to to Henry’s law.

new micro-crack
generation.

Parameters for Radon

Production Rate of 222Rn | 1.14 x 10-5 kBgm3s™*

in Pore Space

Henry's Constant 44 Wilhelm et al. (1977)
Solid—Water Partitioning | 1.4 x 10> m3kg! Nazaroff (1992)
Coefficient

Diffusion Coefficient ~10° m?s"

Half-life 3.3x10%s

Boiling Temperature 211.3 K

Melting Temperature 202 K

Solubility 22 cm?/100gH,0 20°C, 1atm
Recoil Length 20~ 70 nm




Radon from Rocks

222Rn is generated by a decay of 226Ra existing
in rock subsuﬁage_. T O,

@ 222Rn
@ ??°Ra

Radon emanation power governing the amount
of radon gas released from a rock is regarded as
constant because the half-life of 22°Ra is 1600y.

The radon supply is proportional to surface area
of a rock.

Radon Supply into Groundwater

* In a fractured aquifer
— Radon emanation power isconstant.
— Radon supply is proportional to surface area 2

« Radon generation rate from crack surfaces into
pore volume is written as,

R o«c ES

Radon in Aquifer

Aquifer has many fractures retaining
groundwater.

Effective Porosity
\ V \Y

¢ _ Vpal ~ Ypstag _ Vp,flow
A =

Vt Vt

Radon is supplied from fracture surfaces
contacting with groundwater.

The radon supply is proportional to surface area
of cracks

Radon Concentration

Number of radon is written as,
d i}
—N=R-=N (1)
dt T
R : Radon generation rate in pore
space (Bq s™)

7 :Decay time of radon (s)
v Groundwater flow is stable.

v Rn diffusion coefficient is N = Dexp _l + 1R ()
same as that in normal T
water.
Under the steady state,
® N, = R 3)

il - R —> R'at t=0,

e N = (N, —zR')exp(—leR' (4)
(s




Radon Decline Possible Cases

+ Dilation rate of rock mass Recharge rate

T :Decay time of radon (s
N =R = &S % !
R : RadonterT?ratlon fateynipoie All micro-cracks are filled with
C zﬁeri g i il water.
Vp Vp E :Radon emanation power (Bq m=2s)

S : Effective surface area (m2)

M, Effective pore volume (i) 4 D|Iat|on rate of rock mass .> Recharge rate

Gas phase is produced in

Decrease of a radon concentration can be induced o o S

by S to be decreased, Vp to be increased, or S/Vp
ratio to be decreased.

Scenarios for Pore Volume Change

. Wlthout increase of_surface area

No additional fracture is
generated.

New micro fractures will be
generated.

w.Google

264km, 4 hrs drive
N37.694033, E140.890408




Pumping Test at KSM

A pumping test at the Kashima well.

2 - Q=1.33x10"* [m¥s]

SO0
1 =

(s —
0 // 0 M
, p, .

H: -0.02
_3 _3
-1 0 1 2 3 -1 0 1 2 3

47
[ -2 | =-0.678 |n(aj o5

4T 9
| = 2.09)(10_6 [m2/S] S :8.53X10_6

k=3.84x10" [m/s] where, =10

4.12x10° Initial value (1980)

Theis Analysis

oh ,1oh_Soh
(@r)) ror Tot T
S Storage coefficient E

T =kL Transmissivity

Q Pumping rate
Q In[ijzln(h)—ln(W)
h(u) =——W (u) 47T
ArT
A gap between log values of water head change and that
FZS of indicates transmissivity of an aquifer.
(p—="—2=
4Tt

o —T In(ﬂj E In(lj— In(ij
W (u) = —y—lnu+Z(—1)'“— S u r

il
A gap between log values of 1/u and that of
Y Euler’s constant ~0.577 indicates S storage coefficient of an aquifer. Where, r (a

radius of an influenced area by pumping) should be
assumed to estimate the storage coefficient.

Parameters of Porous Material

N N N
Air 100 E Void ratio
e n Porosity
S, S, Saturation ratio
Y
L n=_2=x100
l+e
\ 2

2 2 +
_ (or)°  (du)® Tt du 2Tt )

Theis Analysis (1)
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Theis Analysis (2)

Theis Analysis (4)

(ou)? +(E+1JE=0 h(u) =—exp(C) [ pL(J ) du
dh exp(C—-u) A
Y, h(u) =2 [ 2XRCW g,
@ AxT u
TNy (u) =~ W (u)
h(u) =-exp(C) [ du 4nT
A W(u)=—y—|nu+iz::(—1)‘+1i“_—'i!
7 Euler’s constant ~0.577215665
Theis Analysis (3) Theis Analysis (5)
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=2mT — S i+ I
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Estimation of fracture porosity using radon as a tracer

T. Kuo *and F. Tsunomori?

1: Department of Mineral and Petroleum Engineering, National Cheng
Kung University, Tainan, Taiwan

2: Laboratory of Earthquake Chemistry, Faculty of Science, The University
of Tokyo, Tokyo, Japan

Abstract

In fractured aquifers of limited recharge, the in-situ volatilization of dissolved
radon could cause a decline of radon in ground water precursory to an earthquake.
Based on the mechanism of in-situ radon volatilization, a mathematical model was
developed to correlate the radon decline with fracture porosity and volumetric strain
change in the aquifer rocks. In this paper, a quantitative method using the precursory
radon decline as a tracer to estimate fracture porosity is presented with the help of a

case study.
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Underground Water Observation in Hot Spring, Central Part of
Japan

Shigeki Tasaka', Masaya Matsubara®,Yoshimi Sasaki?,
Norio Matsumoto® and Akito Araya*
1: IMC, Gifu Univ.
2: Faculty of Education, Gifu Univ.,
3: Geological Survey of Japan, AIST,
4: Earthquake Research Institute, Univ. Tokyo

Abstract

Wari-ishi hot spring is located on the Atotsugawa active fault in Central Part of
Japan, is an artificial well which emits water at about 30 liter/min from the depth of
850 meters. The managers of the hot spring had started to measure the water flow rate
using a water bucket, on every Monday from 1977(1st period). The monitoring
networks were started by using the electromagnetic flow meter with the accuracy of
0.25%, in the 10 minute interval from 1998 to 2004(2nd period), and in 1 Hz
sampling from 2004(3rd period). The 1Hz data logger was supported by AIST, GSJ.
Broadband area strain observation was carried out from 2004, by the laser strain
meters in Kamioka Mine of the distance left from Wari-ishi hot spring at 5km, by
Earthquake Research Institute of The University of Tokyo.

There have been 27 co-seismic and pre-seismic events associated with seismic
activity over last 32 years. The observed results of water change were related to the
crust distortion accompanying with the earth tide or the occurrence of an earthquake
through the change of the pore pressure of a stagnant water layer.

Analysis for the water flow was performed in the following viewpoints:

1) The variations of the tidal M, and O; amplitudes of the earth tide by the
BAYTAP-G program, and the tidal response on the tidal strain calculated by
GOTIC-2.

2) The comparison of the step-like increase of discharge water with the
volumetric strain calculated by MICAP-G from the earthquake fault model.

3) The comparison the water changes with the area strain in the seismic
dynamical waveform with the 1Hz sampling data.

4) The dynamical sensitivity by use of the FFT analysis of discharge water and
area strain waveform.

5) The comparison the initial movement of the water waveform with the

13-1
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dynamical area strain data.

6) The characteristic pre-seismic phenomena of water waveform in the amplitude
and cycle of the irregular component, before Off Noto Peninsula earthquake
(Mar-2007).
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. Observation Method
Underground Water Observations (1)Discharge Water were observed in Wari-ishi Hot

in Hot Spring, Central Part of Japan Spring, 1977-2009.
» 1st period :1977-1998(4 EarthQuakes)

Shigeki Tasaka[1]: Masaya Matsubara[2]:Yoshimi Sasaki[3]; Observed by Bucket and Stopwatch(10%) on
Norio Matsumoto[4]; Akito Araya[5] every M.Ond_ay :
[1], [2] IMC, Gifu Univ.; [3] Faculty of Education, Gifu Univ.; * 2nd period :1998-2004(4 EQ) Electromagnetic

Flow Meter(%+0.25%) at 10 min interval

 3rd period :2004-2009(19 EQ) Electromagnetic
Flow Meter in 1 Hz sampling, data logger system
was supported by AIST,GSJ

8th Taiwan-Japan International Workshop on Hydrological and (2)Broadband Observation with Laser Strain

Beochemical RS 1o o nduake Prediction Meters:2004-2009(7 EQ) Data taking of 200Hz
P29, sampling, in KAMIOKA-Mine by Earthquake

Place: National Cheng Kung University, . .
Tainan, Taiwan Research Institute, Univ. of Tokyo

[4] Geological Survey of Japan, AIST,;
[5] Earthquake Research Institute, Univ. Tokyo

Observation Site: Wari-ishi Hot Spring Seismic Changes of Water in Wari-ishi (2004-2009:19EQ)

18 a n d Ka m IO ka M I n e Earthquake date Distance(km) | Mw Mechanism Water Flow (L/min)

@ 1)Off Kii Peninsula(1) | 2004/09/05 19:07 377 7.2 Dilatation | +0.3(step) +1.7-1.7(Oscil)
Kamioka Mine: @ 2)Off Kii Peninsula(2) | 2004/09/05 23:57 63| 75 Dilatation | +4.5(step) +5.2-5.7(Oscil)
Laser Strain Mater 3)Chyuetsu(1) 2004/10/23 17:56 176 6.6 | Compression | +1.9(step)  +0.8-0.8(Oscil)
5km from Wari-ishi 4)Chyuetsu(2) 2004/10/23 18:34 179 | 6.3 | Compression | +2.1(step) +0.4-0.4(Oscil)
5)Off Kushiro 2004/11/29 03:32 1024 7.0 | Compression | - +0.6-0.6(Oscil)
Wari-ish Hot Spring: @ 6) Sumatra 2004/12/26 09:58 5609 | 9.3 - +5.0-5.0(Oscil)
36.3N,137.2E 7)Gifu Hida 2005/02/25 06:27 7 3.0 - | +8.1(step)  +1.5-1.5(Oscil)
Well Depth850m 8)Western Fukuoka 2005/03/20 10:53 701 6.6 Dilatation | - +0.4-0.3(Oscil)
¢ e . Discharge Rate:30L/min 9)Taiwan 2006/12/26 21:26 2285 6.7 -l - +0.55-0.45(Oscil)
¥ % »ﬁ & _ f. L i _ Temperature;40degC 10)Far Off Chishima 2007/01/13 13:24 1804 8.3 -1 - +1.8-2.1(Oscil)
% %L%ﬁ;?fj;;:;e O YU \r{ 1'5,” 11)Noto Peninsula 2007/03/25 09:42 100] 67 Dilatation | +34.1(step) +0.7-1.8(Oscil)
H El fﬁ (1( @ 12)Off Chyuetsu 2007/07/16 10:13 178 6.6 | Compression | +0.5(step)  +1.5-1.2(Oscil)
\ T -d\"’“ﬁ? - ) ™ @ 13)0ff Ibaraki 2008/05/08 01:45 391 | 68 Dilatation | - +1.0-0.7(Oscil)
/ DI L 1y ,..r-l;'f\ ‘\\ 14)Sichuan(China) 2008/05/12 15:28 3077 | 79 - - +1.9-1.8(Oscil)
’ s, E] @ 15)lwate-Miyagi 2008/06/14 08:43 437 6.9 | Compression - +1.2-0.5(Oscil)
@ 16)Off Fukushima 2008/07/19 11:39 468 6.9 Dilatation | - +0.6-1.2(0scil)
17)Off Tokachi 2008/09/11 09:20 867 6.8 Dilatation | - +0.7-0.6(0scil)
18)Papua(indonesia) 2009/01/04 04:44 4125 7.6 - - +0.8-0.8(Oscil)

19)Shizuoka 2009/08/11 05:07 207 6.5 Dilatation | +5.0(step)

@ Laser Strain Data: 2004-2009(7EQ): 1),2),6),12),13),15),16)




Observations of Discharge Water
(3rd period:2004-2009)

3) Chyuetsu 11) Noto
2004/10/23 2007/3/25
M6.8 D=185km M6.9 D=108km
—~ "0 [ Step:6.3L/min Step:35L/min ©12)Off Chyuetsu
c \ - Gito Hid 2007/7/16
£ ) Gifu Hida M6.8 D=172km
Ry 2005/%/25 '\ Step:1L/min
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RESPONSES OF WELL WATER-LEVEL CHANGES TO THE
STRESS WAVE DUE TO WENCHUAN MS 8.0 STRONG
EARTHQUAKEON

Yang Duoxing!? , Sun Xiaolong'?
1) Institute of Crustal Dynamics, CEA, BeiJing, 100085, China.

2) Laboratory of Underground Fluid Dynamics, CEA, Beijing 100085, China.
Wechuan 8.0 strong earthquake related water-level/pore pressure changes
recorded at different monitoring sites showed different features, with water-level
changes distribution demonstrating the heterogenous patterns in spatial scales,as
shown in Fig.1. Such changes, especially those observed at large epicentral
distances (about 2000km), can not be explained by the static strain field,
illustrated in Fig.2 calculated on the base of the elastic dislocation model, the
changes require the dominant effect of earthquake-related stress wave on water

level changes.
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Fig. | Earthquake-related water level changes

distribution demonstrating the heterogenous Fig.2 Strain distribution calculated on the base of
Span 1 o ats canlaalT 2 & C . . s . v
patterns in spatial scales(Liu et al., 2009). the elastic dislocation model(La1 wenyi et al., 2008)
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Fig. 4 Water level changes and related

Fig. 3 QQ plots between Water level
envelopes

ascending and descending data
After investigation of the quantile-quantile (QQ) plots of a set of water-level increase
versus water-level decrease data, it is inferred that cosesmic responses of water-level
increase and decrease are controlled by an analogous mechanism. The related
envelopes ,as shown in Fig.4, implied the potential impact of the stress wave to water-
level changes induced by Wenchuan strong earthquake.
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The improved CE/SE scheme Stress wave propagation
Elastic-plastic flows model based on CE/SE
(Space and time conservation element and

solgtlon element).meth.od was applied to P N ' §
estimate the relationship between the stress s
wave and water-level changes.
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Solution element SE  Conservation element CE =
Fig. 5 Mesh construction of the improved CE/SE method
Governing equations @ .
2 D multimaterial elastic-plastic flows model
based on fluid dynamical equations, obeying
the Hook's law and the plasticity flow model. Fig. 8. Stress wave propagation, calculated by CE/SE,
The Mie-Cruneisen equation of state and through a rectangular domain at time 60,150 and 300s
Johnson-Cook constitutive model applied.

Model validation and evaluation

Dlsta.nt:e . .
Fig. 9 CE/SE calculated water level changes

and related envelopes at different monitoring

siles

Results show that the model performed
well in predicting water-levels changes in
spatial macro-scales, which were mainly
controlled by the Wenchuan 8.0 earthquke
related stress wave. It implied that
earthquake related stress waves result in
the fluctuation of local pore pressures,
which alters the surrounding pore pressure

Fig. 6 Deformation of a steel ball impacting on gradients , leading groundwater flow in the

aluminium (=2.8.16,32s) . Experiment (gray),CE/SE local scale.
calculated results (color)

Pressure
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RESPONSES OF WELL WATER-LEVEL CHANGES TO THE
STRESS WAVE DUE TO WENCHUAN MS 8.0 STRONG
EARTHQUAKEON

Yang Duoxing®?, Sun Xiaolong*?
1) Institute of Crustal Dynamics, CEA, BeiJing, 100085, China.
2) Laboratory of Underground Fluid Dynamics, CEA, Beijing 100085, China.
Wechuan 8.0 strong earthquake related water-level/pore pressure changes
recorded at different monitoring sites showed different features, with water-level

changes distribution demonstrating the heterogenous patterns in spatial scales,as

shown in Fig.1. Such changes, especially those observed at large epicentral
distances (about 2000km), can not be explained by the static strain field,
illustrated in Fig.2 calculated on the base of the elastic dislocation model, the
changes require the dominant effect of earthquake-related stress wave on water
level changes.
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The improved CE/SE scheme Stress wave propagation
Elastic-plastic flows model based on CE/SE
(Space and time conservation element and
solution element) method was applied to
estimate the relationship between the stress

wave and water-level changes.
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Fig. 5 Mesh construction of the improved CE/SE method
Governing equations
2 D multimaterial elastic-plastic flows model
based on fluid dynamical equations, obeying
the Hook’s law and the plasticity flow model.

Fig. 8. Stress wave propagation, calculated by CE/SE,
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Fig. 1 Earthquake-related water level changes
distribution demonstrating the heterogenous
patterns in spatial scales(Liu et al., 2009).
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Fig.2 Strain distribution calculated on the base of
the elastic dislocation model(Lai wenji et al., 2008)
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Fig. 4 Water level changes and related
envelopes

After investigation of the quantile-quantile (QQ) plots of a set of water-level increase
versus water-level decrease data, it is inferred that cosesmic responses of water-level
increase and decrease are controlled by an analogous mechanism. The related
envelopes ,as shown in Fig.4, implied the potential impact of the stress wave to water-
level changes induced by Wenchuan strong earthquake.

The Mie-Cruneisen equation of state and
Johnson-Cook constitutive model applied.

Model validation and evaluation

Fig. 6 Deformation of a steel ball impacting on
aluminium (t=2,8,16,32s) . Experiment (gray),CE/SE
calculated results (color)

Pressure

through a rectangular domain at time 60,150 and 300s

Distance
Fig. 9 CE/SE calculated water level changes
and related envelopes at different monitoring
sites
Results show that the model performed
well in predicting water-levels changes in
spatial macro-scales, which were mainly
controlled by the Wenchuan 8.0 earthquke
related stress wave. It implied that
earthquake related stress waves result in
the fluctuation of local pore pressures,
which alters the surrounding pore pressure
gradients , leading groundwater flow in the
local scale.
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Characterization of earthquake-induced water level fluctuation
using data mining techniques

Kuo-Chin Hsu, Feng-Sheng Chiu,
Department of Resources Engineering, National Cheng-Kung University, Taiwan

Abstract

Recognition of groundwater anomaly pattern is important to
earthquake hydrology. Recently, independent components analysis (ICA)
has been emerging as an efficient tool in signal analysis. The ICA is able
to recognize independent sources from complex received signals.
However, the water level is recorded in few monitoring wells. To apply
the technique to the earthquake-induced water level signal, wavelet
independent component analysis (WICA) is introduced. The effectiveness
of WICA is demonstrated by applying WICA to both synthetic signals and
field groundwater levels signals. The results show that the WICA method
is an efficient tool which has potential to recognize the groundwater

anomaly pattern caused by earthquake.
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Characterization of earthquake-induced
water level fluctuation using data mining
techniques

Kuo-Chin Hsu and Feng-Sheng Chiu
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Independent Component Analysis (ICA)

Three source signals s, (1),

S,(t) and s5(t) X, (t) = a,,S; +@,,S, +a,,S,....(1)
Three received mixed X, (1) = 8,5, +8,,S, +855;....(2)
signals x,(t), X,(t) and X5(t):  X5(t) = a3,S, +a,,S, +a5,S5....(3)
ICA has the capability to

separate source signals

from the mixed signals.

Statement of problem
How to separate sources from received
data?
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Hyvarinen et al., 20015

How ICA work?
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With given vector x and knowing components s are independent,
ICA solve matrix such that vector s is with most non-
Gaussian structure that is with lowest entropy.




Why ICA not PCA?

Original signals Mixture signals Recovered signals with ICA Recovered signals with PCA
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O, :White noise M, =0,+0,+0,+0,+0;

Wavelet methods

Decompose time series, , into local,
time-dilated and time-translated wavelet
components, / -somplete (not necessarily
orthogonal) basis

W (a,b) :jﬁ f(t)-y/(%)dt
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Morlet wavelet function

I
ﬁ:ﬂgﬁuc\}\j

-4

S=Ai+D
=A2+ D2+ DI
=As+Di+ Do+ Dy

a is scaling function, control the frequency domain
b is translation function, control the time domain
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‘ Earth tide

‘ Sea Tide

| Rainfall

‘ Earthquake

‘ Noise

‘ 2

Generally, ICA requires that the number of sensors must be no
less than the number of independent sources to ensure
enough information for separation of all sources.

However, this is usually not the case.

Example of WICA application

X1 is composed of four impulses,
which is considered as feature to be
isolated. " — o 4

SRR

Xz is a chirpy signal

Waveform of the mixture of .|, il ||

impulses and chirpy signals
(mixed with 0.2:1).
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Case C_05 result of the WICA T losl
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Conclusions

1. ICA has the capability to separate independent
components sources from mixed signals.

cs — = E—— 2. The proposed WICA filter can extract the
“w/f\ ' — independent sources from one mixed signal.
| i N 3. The Tono case shows that the preseismic water level

! i »f:\ fluctuations have groundwater drop in 10~20 days

: N before the earthquakes.
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N | o M earthquake parameters are improved by using
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Ah is the difference of ten-day-before average water level and lowest water level
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Evaluation of the effects of ground shaking and static volumetric
strain change on earthquake-related groundwater level changes in
Taiwan

Wen-Chi Lai' 2, Kuo-Chin Hsu?, Chjeng-Lun Shieh' 3, Youe-Ping Lee *,
Kuo-Chang Chung*, Naoji Koizumi® and Norio Matsumoto®

1: Disaster Prevention Research Center, National Cheng-Kung University, Taiwan

2: Department of Resources Engineering, National Cheng-Kung University, Taiwan

3: Department of Hydraulic and Ocean Engineering, National Cheng Kung University,
Taiwan

4: Water Resource Agency, Ministry of Economic Affair, Taiwan

5: Geological Survey of Japan, National Institute of Advanced Industrial Science and

Technology

Abstract

During the period from 2001 to 2005, the Disaster Prevention Research Center of
National Cheng-Kung University established a groundwater observation network
composed of 16 wells mainly along active faults for research on earthquake-related
groundwater changes. The 16 wells were mainly chosen from the 550 groundwater
observation wells of Water Resources Agency (WRA), where WRA had been
monitoring groundwater for managing groundwater resources. Groundwater level has
been observed with a resolution of 0.2 mm at the wells. The depths of the screens
range between 80 and 252 m. We analyzed groundwater level data at 6 of the 16
wells during the period from 2003 to 2006 and evaluated the ability for detecting
earthquake-related groundwater level changes. At the 6 wells, strain sensitivities of
the groundwater level range between 0.1 and 0.5 mm/10”. It means the 6 wells can
detect the volumetric strain changes with the order of 10°. We also analyzed
coseismic and/or postseismic groundwater level changes related to 17 earthquakes in
and around Taiwan whose magnitudes are 6 or greater. The analysis showed that not
the static coseismic volumetric strain changes but ground shaking is the main reason
for the earthquake-related changes. It also showed that dynamic strain change might

be important factor as well as the peak ground acceleration.
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DP RC Observation wells

Disaster Prevention Research Center, P S b i E
National Cheng Kung University, Taiwan 1] dUI U1 il alryg ul J':.]JJUH

Evaluation of the effects of ground shaking Locatin | pap “Teptn | coology | Gomuciwiy

and static volumetric strain change on Lon. | Lat (m) (mimin)

earthquake-re]ated groundwater level TWN | 121.782 | 24.746 130 112-124 Qs, Qm 2.22E-04
changes in Taiwan HUL | 121605 | 23977 | 205 140-160 Qc

TLO | 120.784 24.491 99 84-93 (O 8.00E-04

Wen-Chi Lait?, Chjeng-Lun Shieh!3, Kuo-Chin Hsu?,

NO“O MatsumOtO 4 NanI KOIZumI 4 DHR 120.561 23.688 258 222-252 (O)s] 4.15E-03

LUJ 120.342 23.227 228 204-222 Qs, Qm 2.67E-03

1. Disaster Prevention Research Center, NCKU, Taiwan
2. Department of Resources Engineering, NCKU, Taiwan NBA | 120.340 | 23.071 153 135-147 Qs, Qm 1.84E-03
3. Department of Hydraulic and Ocean Engineering, NCKU, Taiwan

Qc: Quaternary conglomerate, Qg: Quaternary gravel, Qs: Quaternary sandstone, Qm:

Quaternary shale and mudstone

l. Introduction Observation

DPII'RC
Tectonic Setting of Taiwan. “'a,;” e 3 - : : M Events of the earthquake M, >3 in Taiwan 03’~06’

Highly Seismic hazard risk. ;l"f : | s _
Advantage of the research bisen . 23 ;
= High density monitoring network “ ' “ m

for water resources fooomet 2_- ; _ N
» High density / : ‘ - “

Good quality observation

— Waiting for good news...

2 " (Cheng et al.,2000)




Observed coseismic events (03’~06")

DPII'RC

o Total Observation, step changes (S)  events,

oscillation (O) events, O+S  events

Catalog Events

2003/4/3 Tainan, M=4.9 2
2003/6/10 Taitung, M=6.5
2003/6/17 Taitung , M=5.9
2003/12/10 Taitung , M=6.6
2003/12/11 Taitung, M=5.7
2003/12/18 Taitung, M=5.8

- 9

= o0 |

% 99 |
g o V\“\
E IJ\ ~ : f\/

15:03:36 15:05:02

st gHU BY5/1970% ME:5"

Decomposition and Extraction

Estimation of the theoretical responses
DP RC

e Using Program to estimate the Tidal component of
observed groundwater level

o Calculate the theoretic tidal potential from Program

e Derived the 0)Y}

static volumetric strain sensitivit tidal responses + tidal potential

¢ Calculate the coseismic static volumetric strain using
program.

e Derived the

Amp. Of Chg.

estimated from tidal response by

calculated volumetric strain x strain sensitivit

Strain Sensivity (mm/ 10 strain)

Verify of the Static Volumetric

Strain Sensitivity opilinc
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Static Volumetric Strain Sensitivity
DP  RC

TLO DHR LUJ NBA TWN HUL

Amplitude (10-8) [Phase Shift (degree)]

Static Volumetric Strain Sensitivity

TLO DHR LUJ NBA TWN HUL

Amplitude (10-8) [Phase Shift (degree)]

Vol. strain by M, earth tide,t, 1.35[0] 1.37[0] 1.38[0] 1.38[0] 1.35[0] 1.37[0]

Vol. strain by M, oceanic 2.08 0.18 0.11 0.11 0.60 6.10
tidal loading, t, [-321] [-276] [-290] [-301] = [-227] [-184]

\ol. strain by earth + oceanic 3.25 1.40 1.42 1.45 1.04 4.73
tide, t=t, + t, [-336] [-352] [-356] [-356] [-335] [-185]

\ol. strain by M, earth tide,t, 1.35[0] 1.37[0] 1.38[0] 1.38[0] 1.35[0] 1.37[0]

\ol. strain by M, oceanic 2.08 0.18 0.11 0.11 0.60 6.10
tidal loading, t, [[321]  [-276] = [-290] [-301] = [-227] [-184]

\ol. strain by earth + oceanic 3.25 1.40 1.42 1.45 1.04 4.73
tide, t=t, + t, [-336] [-352] [-356] [-356] [-335] [-185]

3.7210.67 6.17+0.60 2.5410.59 4.2410.29 3.9310.27 23.7710.50
M, amplitude(water level, t, )
[-282149] [-339+23] [-350%34] [-349115] [-272121] [-2116]

Strain sens. by Water Level
M, tide, Ws = t, /t, (mm/10%) 1.14 4.39 1.78 2.92 3.78 5.02

9

Comparison of the theoretic and
observed responses
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(c) LUJ (d) NAB (g) TLO (h) SIP
Static Volumetric Strain (108

3.7210.67 6.1710.60 2.54+0.59 4.24+0.29 3.93+0.27 23.7710.50
M, amplitude(water level, t,,)
[-282+49] [-339+23] [-350%34] [-349115] [-272+21] [-21%6]

Strain sens. by Water Level
M, tide, Ws = t,/t, (mm/10%) 1.14 4.39 1.78 2.92 3.78 5.02

Strain sens. by
(mm/10°8)

Problem statement
DP RC

e Observed coseismic patterns can fit to strain model ,
but the amplitudes are
compare to the static strain sensitivity
estimated from tidal response.

e Some wells seems or

, them were not expected by the
fault-dislocation volumetric strain .

e The of the coseismic groundwater level
changes remains unknown.




Observed coseismic ev
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Observed coseismic events (03’~06")
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Mechanism of coseismic groundwater level changes

DPII'RC

Paore pressure

strain

\ Consolidation, —
liquefaction [-<x| Permeability
increase

Dynamic| _wi

strain ,
Microfractures

Major

Unclog fractures

M. Manga and C.-Y. Wang (2007)

Conclusion

DPRC
o The results show that the
could be another possible factor for the
coseismic groundwater level changes.

o It seems to appear especially in with
in lose-cemented and
permeable sedimentary deposits.

e The similar effects can also be recognized in the
coseismic groundwater level changes related to the
and

2008/5/12 Wenchuan, China | '
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Thank you !






