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Energy budget for an earthquake
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Goal of the talk

Target: Temperature (heat) signature of the earthquake

We observed temperature signature around the fault zone
along the Chelungpu fault (September, 2005)

The signature can be interpreted as the frictional heat 
caused by fault slip at the time of the 1999 Chi-Chi earthquake

Evaluate other cause of the temperature anomaly
(1) Spatial variation of material thermal conductivity

Estimate “noise level” and obtain upper bound of heat strength

(2) Water flow
Calculate the temperature anomaly affected by 1-dimensional water 
flow
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Shallow borehole (Tanaka et al., 2006)

Deeper and stable measurement!

Relatively broad anomaly: affected by shallow ground water flow?
Mesurement right after drilling: drilling effect
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1999 Chi-Chi earthquake and TCDP site

[Ma et al, 2002]

TCDP (大坑，台中)
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Measurement
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Quartz thermometer
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Temperature profile using Quartz thermometer

(Kano et al., 2006, GRL)
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Spatio-temporal variation of the temperature signature

One-dimensional heat conduction
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(Officer, 1974)

S：strength of source, ºCm
α ：thermal diffusivity, 

Temperature anomaly
Transient: Friction, ….
Stable: Geothermal gradient

+ thermal propertyPlane Heat Source = S
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Temperature anomaly

~ 50 m

Remove linear temperature gradient
Average of 4 profiles

4 m slip, 6 years, α = 3.4 x 10-7 m2/s 
(Kano et al., 2006, GRL)
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Estimated parameters

●Heat diffusivity α ~ 0.3 x 10-6 m2/s
(k ~ 0.9 Wm-1K-1)

●Strength of source S ~ 1 oCm
↓ (Q ~ 4 x 106 J/m2)
Shear stress τ ~ 0.6 MPa
↓

Frictional coefficientμ ~ 0.04

●Upper limit of shear stress τ ~ 1.7 MPa
↓

Frictional coefficientμ ~ 0.1
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Pt-RTD thermometer
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Temperature anomaly using another thermometer (Pt-RTD )
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Shear stress and frictional heat

q : Heat flow
κ : Thermal conductivity
T : Temperature
z : depth

dz
dTq κ=

Temperature gradient (-> temperature structure) is affected by variation of 
thermal conductivity under constant heat flow.
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Temperature observation and core measurement

Observed temperature variation

Predicted temperature variation
from core thermal conductivity
[Matsubayashi, T145-P003]

Hole-B

Hole-A

LPF: 40 m

60 mA/m2
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Effect of water flow
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v : flow rate
n : porosity
ρw: density of water
cw : specific heat of water.
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Effect of water flow
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Effect of waster flow
(Kano et al., 2006, GRL)
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The effect of the water flow:   (1) move the anomaly downstream in position 
(2) broaden its shape
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Temperature anomaly
(Kano et al., 2006, GRL)

~ 50 m

Remove linear temperature gradient
Average of 4 profiles

Observed temperature signature is located right at the location of the fault
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Summary

(1) Spatial variation of material thermal conductivity 
may cause noise in data
Our observation gives upper bound of heat strength (still low friction) 

(2) Minimal effects from fluid flow 
in our observed temperature signature

(3) Small heat signature indicates a low level friction 
on the fault during earthquake
Shear stress: 2 MPa
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Temperature observation and core measurement

Observed temperature variation (Hole-A)
– Predicted temperature variation (Hole-B)

LPF: 40 m

Correct background temperature gradient
- Depth correction (Hole-A vs Hole-B)
- Appropriate filter

Our estimate give upper bound of temperature anomaly
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Upper limit of the shear stress

α = 0.34 m2/s, c =1140 J/kgK, ρ = 2600 kg/m3

0 1 32 4
0.00

0.10

α = 2.00 m2/s

c =300 J/kgK, 
ρ = 2200 kg/m3
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Motivation

Find the temperature signature associated with the 1999 Chi-Chi, Taiwan 
earthquake 

Amount of frictional heat (~ Level of shear stress)
Key unknown values of important parameter for understanding the physics 

of earthquake rupture
Cannot be determined by seismic observation

Residual heat
Can be observed as temperature anomaly along the fault
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Precise temperature measurements

Development of thermometers
Quartz thermometer (0.003 °C)
Pt-RTD thermometer (0.001 °C)

No water flow  in the borehole
Cased borehole

No drilling disturbance
A half year from the end of drilling
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Quartz thermometer
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Pt-RTD thermometer 
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Estimation

Assumption
– Transferred to frictional heat
– One-dimensional heat conduction
– Constant background thermal gradient
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σn：normal stress
(Sibson, 1974)
p：pore pressure

hydrostatic
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Summary

Precise temperature measurement reveals
Temperature anomaly of ~ 0.05°C
Temperature distribution at depth comparable to core measurement

Low shear stress
Low dynamic friction
Mechanism such as super-hydrostatic pore pressure or lubrication

Future works
Temperature anomaly caused by spatial variation of thermal property
Sensor calibration (transfer function of instruments)
Repeated measurement (Hole-B ?)
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Shear stress and frictional heat
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S : Strength of source,°Cm
τ : Shear stress, MPa
u : Slip, m
c : Heat capacity,  1140 J Kg-1 oC-1

ρ : Density, 2600 Kg/m3
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Expectation

Depth 1 km, Slip 8 m, frictional coefficient 0.6 (S ~50 °Cm)

5 years

5.5 years

α = 1.2 x 10-6 m2/s

α = 0.6 x 10-6 m2/s

α = 0.9

α = 1.2

5 years
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Temperature anomaly

Remove linear temperature gradient
Average of 4 profiles
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