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IntroductionIntroduction

• Earthquakes cause a variety of 
hydrological phenomena, e.g. groundwater 
level fluctuations and oil production 
variations

• Poroelasticity has been extensively utilized 
to explain and model these phenomena 
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PoroelasticityPoroelasticity

• Poroelasticity refers to the strong time-
dependent coupling between applied 
stress and pore fluid pressure that is often 
encountered in hydrogeological problems 
involving groundwater aquifers, 
subsurface waste disposal sites, and oil 
reservoirs 



5

Biot TheoryBiot Theory

• The mathematical description of 
poroelasticity in a homogeneous, isotropic, 
elastic porous medium containing a single 
compressible viscous fluid was pioneered 
in a series of celebrated papers by Biot 
[1941, 1956, 1962]
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MotivationMotivation

• However, closed-form analytical solutions 
of the Biot equations subject to a variety of 
initial and boundary conditions are very 
limited

• To obtain these solutions, it is essential to 
perform a normal coordinate 
transformation that decouples them
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Biot Model EquationsBiot Model Equations
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Inertial CouplingInertial Coupling
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Viscous CouplingViscous Coupling

Assume that Poiseuille flow is valid for describing dissipation 
             caused by the relative motions of solid and fluid

where  is the pore fluid dynamic shear viscosity 
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Dilatational Wave EquationsDilatational Wave Equations
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HelmholtzHelmholtz equationsequations
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Parameters Parameters 
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MacLaurinMacLaurin expansionsexpansions
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Lowest order in             Lowest order in             
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TimeTime--domain Decoupled domain Decoupled 
Equations [Lo Equations [Lo et al.,et al., 2005]2005]
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Linear StressLinear Stress--Strain RelationsStrain Relations
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TimeTime--domain Decoupled domain Decoupled 
Equations [Lo Equations [Lo et al.,et al., 2005]2005]
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Pore fluid pressure can be determined analytically!



18

Conditions for Conditions for ““low frequencylow frequency””

The validity of  our eqautions requires that 

1

Intrinsic time scale exists in Biot theory
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Values of the Critical Values of the Critical 
Frequency (kHz)Frequency (kHz)

6299.2121274.7743343.363Lost Hills 
diatomite

2099.737424.9241114.454Massilon
sandstone

17.1793.4769.118Unconsolidated 
sand

OilTCEWater[Lo et al., 2005]

>> well above the seismic frequency range!



20

ConclusionsConclusions

• A propagating wave equation and a 
dissipative wave equation for the Biot fast 
and slow compressional waves, 
respectively, were derived in the low-
frequency limit
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ConclusionsConclusions

• The dependent variables of our decoupled 
equations can be expressed in terms of 
linear combinations of solid dilatation and
linearized increment of fluid content, 
alternatively, linear combinations of pore 
fluid pressure and total dilatational stress
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ConclusionsConclusions

• The precise definition of “low frequency” is 
equivalent to requiring the (angular) 
frequency of wave excitation to be much 
smaller than a critical frequency equal to 
kinematic viscosity of the pore fluid divided 
by the permeability of the porous medium
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ConclusionsConclusions

• Illustrative numerical calculations 
performed for porous media containing 
water or NAPL indicate that  the critical 
frequency will lie typically in the kHz to 
MHz range, well above the seismic 
frequency range


