XVI. CHEMICAL COMPOSITION OF SEDIMENT
CORES FROM THE GH79-1 AREA

David Z. Piper*

Introduction

Sediment samples from three box cores and one piston core, collected on cruise
GH79-1 of the research vessel Hakurei-Maru, were analyzed for major oxides and minor
elements. All cores were collected from a small area of the Central Pacific Ocean,
centered at 167°40'W and 10°N (Fig. XVI-1). Forty-four samples were leached with
hydroxylamine hydrochloride-acetic acid (HHCI-HAc) and the soluble fraction of 12
elements (Si, Al, Ca, Mg, K, Na, Fe, Mn, Co, Ni, and Zn) measured. The concentrations
of 10 elements (Si, Al, Fe, Mg, Ca, Na, K, Ti, P, and Mn) were determined for 15 bulk
sediment samples and 5 samples of the sediment fraction insoluble in HHCI-Ac.

The fine fraction (grain size less than approximately 5 um) of pelagic sediments consists
of a mixture of sedimentary components classified according to their origin as hydroge-
nous, biogenous and lithogenous (GOLDBERG, 1963). From the bulk chemical analyses I
calculate that the concentration of the biogenic phases, opaline silica and CaCOj,
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Fig. XVI-1 Location of the area surveyed in this study (shown by +) and of the three
DOMES sites. Location of the DOMES sites are given in the upper right
corner. For the latitude and longitude of the area of the Central Pacific
Basin examined in this study see other papers in this cruise report.
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varies between 3 and 539, but averages 109/. The insoluble residue is interpreted to
consist of lithogenic material, whose composition is well defined by its metal: Al,O,
ratios, and opaline silica. The soluble fraction may represent the hydrogenous com-
ponent, which consists of exchangeable ions and amorphous metal oxides (largely of
Fe, Mn, and possibly Al). Ca**, as CaCO;, is also present in this fraction.

The aim of this study is to ascertain the relation between the composition of these
components and the composition and abundance of associated manganese nodules.

Technique

The major oxides were measured by X-ray fluorescence. The composition of the soluble
fraction of sediment was measured by atomic absorption after leaching the sediment
samples, following the method of CHESTER and HUGHEs (1967), at a temperature of 20°C.
Accuracy and precision for the X-ray fluorescence analyses are better than 19 and,
for the atomic absorption analyses, they are approximately 59%. The results of these
analyses are given in Tables XVI-1 and -2.

Bulk Sediment Composition

The bulk sediment consists of lithogenic matter, which may be terrigenous or marine
in origin; biogenic material (opaline silica, CaCOj;. and minor amounts of hydro-
carbons); and hydrogenous material, usually making up approximately 109 of the
total sediment and composed mostly of exchangeable ions and amorphous oxides of
Fe and Mn. The relative abundances of opaline silica can be estimated by inferring a
fixed SiO,:Al,O; ratio of 3.57 for the lithogenic fraction and assigning the excess SiO,
to biogenic SiO,. This value is based on the SiO,:Al,O; ratio (1) measured on pelagic
sediment which is free of biogenic silica (PIPER et al., 1979) and (2) reported for ter-
rigenous shale (Table XVI-3) by TurRekiAN and WEDEPOHL (1961). This “‘excess™ SiO,
varies between 1.26 and 31.84 9/ (Table XVI-4).

The concentration of CaCOj; can be calculated in the same way, assuming a CaO:
Al,QO, ratio for the lithogenic component of 0.065 (Table XV1-3). This calculation makes
no allowance for the occurrence of Ca** as a surface adsorbed ion. This uncertainty
will be partially canceled by the occurrence of some of the Al,O, within the hydrogenous
fraction. The uncertainty in the calculation is probably less than 10%,. As these samples
were collected at depths below the carbonate compensation depth (CCD), they quite
expectedly have low CaCO;. Two subsurface samples from piston core P138, however,
have high CaCO, (Table XVI-4).

The hydrogenous component, exclusive of CaCO,, has an average concentration of
approximately 6% when each of the metals is expressed as an oxide.

Insoluble Sediment Fraction (ISF)

The insoluble sediment fraction consists of lithogenic material and opaline silica, both
of which are not attacked by HHCI-HAc. The concentrations of SiO, and TiO, changed
by less than 2 % upon treatment with HHCI-HAc. X-ray diffraction patterns of treated
and untreated samples were identical.

Sediment from three other areas has been examined (PIPER ef al., 1979) in greater
detail than sediment from the area examined in this study. These sites lie along an
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Table XVI-3 Average major oxide ratios of the insoluble fraction of pelagic sediment
from the Central Pacific Basin (this study), DOMES sites (PIPER et al., 1979)
and of terrigenous shale (TUREKIAN and WEDEPOHL, 1961). The samples are
arranged left-to-right in order of relative location from west to east. See
Fig. XVI-1 for their actual location.

Central DOMES DOMES DOMES

Pacific Basin  Site A Site B Site C Shale
Fe,03/Al1,0, 0.608 517 471 457 0.446
MgO/Al, 0, .205 173 166 156 0.164
Ca0/AlO, .065 .058 .050 .042 0.204
Na,0/Al,0; .0640 L0813 .0872 L0850 0.0851
K,0/Al;0; 0.184 165 .180 192 0.211
TiO,/Al,0; 072 .057 .055 .053 0.051
P,0s/Al,0; .0058 .0073 .0066 .0055 0.001
MnO/Al;O; .0054 .0043 .0040 .0037 0.0073
Si0,/Al1,0, 5.39 4.52 4.55 3.57 3.86

Table XVI-4 Concentrations of biogenic CaCO, and SiO, calculated from bulk composi-
tions (Table XVI-1). Refer to the text for the procedure.

P138 P138 P138 P138 P138 G(B")948 G(B)948 G(B')948
(0-2) (6-8) (15-17) (163-165) (378-380)  (0-2) (6-8) (13-15)

CaCO; 1.91 2.00 1.90 8.14 20.87 1.60 1.74 1.53

SiO, 9.75 6.23 9.15 10.31 31.84 11.79 10.36 7.73
G(B)948 G(B)950 G(B)951 G(B)951 G(B)951 G(B)951 G(B")951
(28-30) 0-2) (0-2) (4-6) (8-10)  (13-15) (23-25)

CaCO, 1.48 1.87 1.46 1.31 1.34 1.41 1.93
SiO, 1.26 11.05 14.14 16.25 10.00 14.33 6.33

east-west line between 8° and 15°N. At each site (Fig. XVI-1) the composition of the
ISF is uniform. The composition of this sediment fraction for the Central Pacific Basin
compares closely with the ISF of the other three areas in the North Pacific (Table XVI-3).
Sample P138 (378-380)R from the Central Pacific, however, is significantly different
(Table XVI-1) from the other samples with regard to its CaO:Al,0; and TiO,:Al,O4
ratios. .

Between the four sites, compositional ratios exhibit a longitudinal trend. This east-west
trend in the composition of the ISF may be related to a decreasing influence of con-
tinentally derived material from east to west. The ISF at DOMES Site C, the easternmost
of these four locations, most closely resembles the composition of terrigenous mud.
An increase in the relative contribution of basaltic debris, from east to west, may be
one factor contributing to the relative increases of Fe,0,, MgO, Ca0, and TiO, and
the decrease in total alkalies along this same trend.

Certainly other factors, such as sediment diagenesis and clay mineralogy, contribute
in a major way to variations in sediment composition. For the DOMES samples, the
concentration of montmorillonite in the clay-size fraction correlates strongly with the
trends in elemental composition (PIPER ef al., 1979). This correlation and the elemental
composition of sediment from the Central Pacific Basin suggests that the concentration
of montmorillonite in the samples of this study is about 30%.
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Soluble Sediment Fraction (SSF)

The soluble sediment fraction consists of amorphous metal oxides (predominantly
Fe*?, Mn**, and possibly Al*?), adsorbed ions (Na*, K*, Ca**,and Mg**), CaCO,,
and manganese nodules. Within the fine fraction of sediment, minor metals (Ni, Cu,
Co and Zn) have been found in similar studies to correlate strongly with Mn, suggesting
that they also occur in the amorphous oxide fraction.

The distribution of this fine-grained fraction and its variations in composition may
have particular relevance to the genesis of manganese nodules. Basically, two types of
nodules can be distinguished in the North Pacific by their mineralogy (CALVERT and
Price, 1977), surface texture (PIPER ef al., 1979) and elemental composition. Nodules
with relatively high Ni:Mn and Cu:Mn ratios contain todorokite as a major mineral
and have a granular surface texture. The second group has relatively low Ni:Mn and
Cu:Mn ratios, exhibits a smooth surface texture, and contains little todorokite. This
latter group of nodules is considered to receive most of its metal content directly from the
overlying seawater, whereas the nodules containing todorokite receive a large contribu-
tion of metals from the interstitial water of associated sediment during sediment
diagenesis.

This interpretation implies that sediments lose relatively more Cu and Ni than Mn
to nodules during diagenesis and that the Cu:Mn and Ni:Mn ratios decrease with depth
in the sediment. In the three box cores the Cu:Mn ratio decreases with depth in the
sediment (Fig. XVI-2). The Ni:Mn ratio is more variable. In all three box cores it
displays an indistinct minimum between approximately 10 and 15cm depth (Fig.
XVI-2). In box core G(B')951 the Ni:Mn ratio has a subsurface maximum above
this minimum. The absolute concentrations of each metal in the three box cores are
approximately the same. The Mn:Co ratio does not vary significantly. The distribution
of Zn shows considerable scatter.

A surprisingly large fraction of the Al is also present in the SSF, approximately 10%,
of the total Al. Profiles of absolute concentration exhibit considerable scatter. Variable
dilution of the hydrogenous component by biogenic material, mostly opaline silica,
may account for much of this scatter. When normalized to soluble Mn, however, the
Al profiles show a curve similar to those of Cu:Mn ratios.
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Fig. XVI-2 Sediment profiles for metals within the SSF (Table XVI-2) of three box cores.
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