十和田火山後カルデラ期の降下火砕物の推移

久利美和* 栗田 敬**

Miwa KURI and Kei KURITA (1999) The evolution of pyroclasts in the post caldera stage of Towada volcano, northeast Japan. *Bull. Geol. Surv. Japan*, vol. 50 (11), p. 699-710, 6 figs., 1 table.

Abstract: The systematic change in chemical composition of pyroclasts from scoria (Ninokura stage) to pumice (Nakanoumi stage) is observed in post caldera stage of Towada volcano, northeast Japan. The objective of this study is to characterize pyroclasts in post caldera stage of Towada volcano, in the recent 13,000 years. Field investigation, systematic sampling of pyroclasts at the post caldera stage and modal analysis on the samples were performed. Particularly we have focused on the chemical variation of the glass inclusions enclosed in phenocrysts, that can be considered to represent magmatic melt at the time of crystal growth. The transition from scoria eruption to pumice eruption, from basaltic to felsic in composition, and from tholeiitic to calk-alkaline in rock series was recognized in eruption units G (Shingo) and F (Natsuzaka). In this transition stage the chemistry of bulk rocks represents tholeiitic series, while that of glass inclusions shows calkalkaline series. The results of this study for equilibrium between glass inclusions and host phenocrysts suggest that coexistence of different series chemistry was caused by crustal melting.

要 旨

十和田火山後カルデラ期の降下火砕物の調査を行った。 十和田火山では13,000年前の大規模な珪長質火砕流を 噴出した(L)カルデラ形成期以降,火砕物は苦鉄質組成 から珪長質組成へと漸次移行してきたことが明らかにさ れている。小規模ながら火砕流を発生させたもっとも最 近の噴火活動(A)までを一連の活動とみなせば、この一 連の活動は珪長質火砕流を生成するマグマの形成過程を 考察する上で重要な情報といえる。本野外調査に基づく と、十和田火山後カルデラ期の火砕物はスコリア(二の 倉期)からパミス(中ノ湖期)へと遷移しており,その活 動期は明瞭に別れる。その転換期にあたるのがG(新郷) とF(夏坂)の活動である。これらの火砕物のみかけ密度 は発泡度とともに系統的に変化する。また、本研究にお いてはガラス包有物がある時間断面でのマグマ組成を反 映していると考え、各結晶に含まれるガラス包有物と包 有する結晶の主要元素組成分析を行った。結果、ガラス 包有物組成および斜長石組成は系統的に珪長質化するこ とが示された。さらに、火砕物のみかけ密度、化学組成 ともに転換期を境に大きく異なることが明らかにされた。 転換期には結晶組成とガラス組成が非平衡な環境にあり, その原因は地殻の溶融メルトがマグマに加えられるため であることが示された。

1. はじめに

十和田火山は本州最北端に位置する第四紀の火山の一 つで、火山フロントから約20km、日本海溝から約350 kmの距離にある島弧型火山である。十和田火山の層序 学的研究は Hayakawa (1985)によりなされており、各 噴火の噴出量,年代,地球化学的特徴が調べられている. 約22万年前に始まったとされる火山活動は新しい方か ら順にAからZに分類されている。噴火活動は火砕流 の噴出物を伴う4回のイベントと降下火砕物を主体とす る多数の噴火イベントから成り立っている。特に13,000 年前の噴出物 L(八戸火砕流)の大規模な噴出以降多数の 噴火が生じている。以下,噴火イベントの表記は Hayakawa (1985)に従う。ただし、二の倉スコリア活 動の表記は久利・栗田(投稿中)に従う。これら最近 13,000年間の噴出物について全岩化学組成からみると, SiO₂>70 wt. %の八戸火砕流の噴出後何回かの玄武岩 質安山岩(SiO₂~55 wt. %)の活発な活動があり(二の倉 期:噴出物 NK-I~NK-IX (Hayakawa(1985)の噴出 物 H~K に相当)),その後暫時噴出物は珪長質成分に 富むようになり(中ノ湖期:噴出物 A-G),最終的には 小規模ながら SiO₂>70 wt. %の火砕流の噴出(噴出物 A) に 至って い る(谷口, 1972; 市川, 1991; Hunter and Blake, 1995). このような変動例は大規模な珪長質

^{*} 環境地質部 (Environmental Geology Department, GSJ)

^{**} 東京大学 (Department of Earth and Planetary Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan)

Keywords: Towada volcano, pyroclast, bulk density, major element chemistry, glass inclusion

火砕流を繰り返し噴出させてきた火山にいくつか見られ, その多くはカルク-アルカリ組成とソレアイト組成の共 存が指摘されており,上部地殻中の大規模なマグマの形 成過程を考察するうえで重要な情報として研究されてき ている(Ferriz and Mahood, 1987; Hochstein, 1995; Hunter and Blake, 1995; Hunter, 1998).

本稿では、この様な観点にたって後カルデラ期の噴出 物の特徴をまとめた結果を報告する。特徴の指標として 火砕物の見かけ密度と結晶および結晶中のガラス包有物、 全岩の主要元素組成を用いた。特に、ガラス包有物はあ る時間断面でのマグマ組成を反映しており、マグマ進化 の議論に適した重要な指標である(Clocchiatti and Massare, 1985; Roedder, 1979; Watanabe *et al.*, 1992).

2. 測定試料

本研究においては十和田火山後カルデラ期に注目して おり,前後関係が明確かつ詳細な層序が調べられている 降下火砕物のみに対象を絞った。Hayakawa (1985)の 噴出物の分布結果に基づき十和田火山東部地域を中心に 野外調査を行い,連続性の良い露頭から試料を採集し, みかけ密度の測定および主要元素組成の分析を行った。 調査地点および試料採集地点を第1図に,試料採集地点 の柱状図を第2図に示した。

降下火砕物のみかけ密度は試料採集地点の給源からの 距離や分布軸からのずれに依存して変化する.この影響 を小さくするため、分布軸に近い試料を用いた.また一般に、みかけ密度は同一層準内においても変化する.ス コリア試料については噴出規模が小さいため同一層準内 の変化に乏しく、無視できるとみなした.パミス試料に ついては噴火の始まりと終わりの遷移的な部分を除き、 層準の中央付近での試料を用いた.噴出物Cおよび噴 出物EについてはKaku (1997)の分布軸に近い2地点 (C: 14.6 km, ENE; E: 12.1 km, SE)の粒径が-3 ¢の結 果を引用した.

主要元素の分析は、同じく分布軸に近い連続露頭から 風化の影響が小さい試料を選んだ。いずれの分析も外来 成分である可能性を持つ細粒成分の影響を小さくするた め粒径が-1 ¢ 以上の火砕物を主に用いた。

3. みかけ密度変化

見かけ密度の測定には短時間で多くの試料を測定でき るという利点を持つガラスビーズ法(佐々木・勝井, 1981)を採用した。ただし、この手法はガラスビーズの 径により測定誤差が生じる。誤差の影響を小さくするた めには試料の径にくらべてガラスビーズの径が十分に小 さく、かつ、多孔質試料の孔内にガラスビーズが侵入し ないことが有効である。本研究ではビーズ径-1~0 ¢ の ガラスビーズと粒径-3 ¢ 以上の試料を用いた。みかけ 密度の結果は全体の傾向をとらえるために複数地点で採 集した試料を同一プロット上に示した(第3図 a)).

第1図 調査地域。黒丸は調査地点を添字は柱状図番号を示す。

Fig. 1 Locality map of the studied area. Solid circles show localities of investigated outcrops. Columnar sections of the numbered outcrops (1-13) are shown in Fig. 2.

- 第2図 各地点での柱状図. 露頭番号は第1図参照. 各地点の位置は推定供給源である中ノ湖クレーター中心部を基準に時計回りに北から偏角と距離で示した. A ~G は中ノ湖期の噴出ユニットを, NK-I~NK-IX は二の倉期の噴出ユニットを示す.
- Fig. 2 Columnar sections. Locality for each columnar section, shown with number in Fig. 1, is represented by distance from the inferred eruptive source, Nakanoumi crater, and clockwise azimuth from a north reference direction centering the source. A to G and NK-I to NK-IX are stratigraphic eruption units of Nakanoumi and Ninokura stages, respectively.

-701

- 第3図 後カルデラ期の噴出物の頻度(個数)分布.a)降下火砕物の見かけ密度,b)斜長石中のアノーサイト含有量,c)単斜輝石中の Mg #, d)斜方輝石中の Mg #, e)ガ ラス包有物およびマトリックスガラスの SiO₂含有量.みかけ密度のデータの一部には Kaku (1997)を引用した(C: 14.6km, ENE; E: 12.1km, SE). 噴出ユニッ トの表記は第2 図参照.
- Fig. 3 Frequency histograms for a) bulk density, b)anorthite content of plagioclase, c) Mg # of clinopyroxene, d) Mg # of orthopyroxene, and e) SiO₂ content in glass inclusion. Data of bulk density for C and E are compiled from Kaku (1997)(C: 14.6km, ENE; E: 12.1km, SE). The notation of stratigraphic eruption units is the same as in Fig. 2.

地質調査所月報(1999年 第50巻 第11号)

- 702 --

— 703 —

第1表 ガラス包有物,マトリックスガラスおよび全岩の平均主要元素組成(wt. %).分析値は合計が100%にな るように再計算を行った値を用いた。噴出ユニットの表記は第2図参照。略号は以下の通り。Pl:斜長 石,CPx:単斜輝石,OPx:斜方輝石。

Table 1Average of normalized major element chemistry (wt. %) of glass inclusions, matrix glasses and bulk
rocks. The notation of stratigraphic eruption units is the same as in Fig. 2. Pl: plagioclase, CPx:
clinopyroxene, OPx: orthopyroxene.

A					
element	glass in Pl	glass in CPx	glass in OPx	matrix glass	bulk rock
SiO ₂	76.4	77.1	75.1	73.6	-
TiO ₂	0.5	0.4	0.5	0.3	-
AI_2O_3 E ₂ O	13.3	13.1	13.9	15.9	-
re_2O_3 MnO	2.0	2.1	2.5	1.3	-
MgO	0.2	0.1	0.1	0.1	-
CaO	2.1	2.2	2.5	3.7	-
Na ₂ O	3.6	3.5	3.7	4.1	-
K ₂ O	1.4	1.4	1.3	0.7	-
В					
SiO,	77.1	74.3	76.8	76.9	-
TiO ₂	0.5	0.7	0.4	0.4	-
Al_2O_3	13.3	15.3	13.4	13.1	-
Fe ₂ O ₃	2.0	1.7	2.1	1.7	-
MnO	0.0	0.2	0.1	0.2	-
MgO	0.4	0.3	0.2	0.2	-
	2.1	2.9	2.1	2.0	-
K_2O	1.5	1.0	1.2	1.3	-
С		<u></u>			li da arte Ale Bélande
SiO ₂	74.9	75.2		75.7	_
TiO ₂	0.6	0.6	-	0.5	-
Al ₂ O ₃	13.8	14.0	-	13.5	-
Fe ₂ O ₃	2.6	2.4	-	2.3	-
MnO	0.1	0.1	-	0.7	-
MgO	0.6	0.5	-	0.4	-
CaO	2.7	2.7	-	2.5	-
Na_2O	3.6	3.2	-	4.0	-
K ₂ O	1.2	1.2	-	1.2	-
D				and the second	
SiO ₂	74.1	-	75.2	75.5	-
TiO ₂	0.5	-	0.5	0.6	-
Al ₂ O ₃	14.2	-	13.6	13.4	-
Fe_2O_3	2.5	-	2.8	2.4	-
MaO	0.1	-	0.1	0.1	-
CaO	3.0	-	0.2	0.3	-
Na ₂ O	3.9	-	3.0	3.9	-
K ₂ O	1.1	-	1.2	1.2	-
E	ta ang ag ^{an} titi an ang agantika				de Televine, e n proces tado de la composición
SiO ₂	75.0	73.2	74 2	-	-
TiO ₂	0.6	0.6	0.7	-	-
Al ₂ O ₂	13.6	14.9	13.6	-	-
Fe ₂ O ₃	2.8	3.0	3.3	-	-
MnO	0.0	0.1	0.8	-	-
MgO	0.4	0.5	0.3	-	-
CaO	2.9	3.4	3.1	-	-
Na ₂ O	3.4	3.1	3.4	-	-
K ₂ O	1.4	1.2	1.4	-	-
F					
SiO ₂	64.5	64.1	65.2	63.8	54.9
TiO ₂	1.0	1.0	0.8	1.0	1.5
Al_2O_3	15.2	14.8	14.4	15.3	20.3
Fe ₂ O ₃	7.0	6.5	6.3	7.1	10.0
MnO Mac	0.2	0.2	0.2	0.2	0.2
MgU	2.4	2.8	2.1	2.2	2.9
Na ₂ O	3.9	0.8	0.0 3.0	3.9 3.8	1.4 2.4
K ₂ O	0.7	0.7	0.8	0.8	0.4

G					
element	glass in Pl	glass in CPx	glass in OPx	matrix glass	bulk rock
SiO ₂	72.4	71.8	72.2	71.5	62.0
TiO ₂	0.7	0.7	0.7	1.9	1.0
Al ₂ O ₃	14.2	14.6	14.6	13.3	17.4
Fe ₂ O ₃	3.8	4.0	4.1	4.0	6.8
MnO	0.1	0.1	0.1	0.1	0.2
MgO	1.0	1.1	1.0	0.9	2.1
CaO	3.5	3.9	3.6	3.8	6.3
Na ₂ O	3.1	2.8	2.7	3.3	3.5
K₂Õ	1.1	1.0	1.0	1.1	0.8
NK-I					
SiO ₂	63.0	59.1	57.6	-	48.0
TiO ₂	1.0	1.3	1.3	-	1.2
Al_2O_3	14.6	15.1	15.0	-	21.6
Fe ₂ O ₃	8.1	9.8	10.6	-	13.1
MnO	0.2	0.2	0.2	-	0.2
MgO	3.3	3.7	3.8	-	4.9
CaO	6.5	7.3	8.0	-	9.2
Na ₂ O	2.6	3.0	2.9	-	1.6
K ₂ O	0.8	0.6	0.6	-	0.1
NK-II	<u>Anis Principality and an and an and an </u>				
SiO.	57.4	58.5	57.7	56.6	48.6
TiO_2	11	13	13	1.5	1.2
ALO	15.7	153	15.2	12.3	21.6
Fe.O.	10.0	10.6	10.1	13.4	12.8
MnO	0.2	0.1	0.2	0.4	0.2
ΜαΟ	4.2	3.5	3.9	59	4.8
CaO	83	7.2	8.0	7.8	9.1
Na.O	25	29	3.1	1.5	1.6
K ₂ O	0.6	0.6	0.5	0.5	0.1
NK-III	a bi ka mana ka mangan nga				
SiO	58.5	61.8	61.5		51.0
TiO ₂	1.2	1.2	1.2	-	1.1
ALO.	14.6	14.5	15.1	-	20.1
Fe ₂ O ₂	10.6	10.1	9.7	-	11.5
MnO	0.2	0.2	0.3	-	0.2
MgO	3.7	2.6	2.1	-	4.9
CaO	7.3	6.9	7.1	-	9.1
Na ₂ O	3.1	2.1	2.3	-	1.8
K₂Õ	0.7	0.6	0.7	-	0.2
NK-V					,
SiO	58.5	56.7	57.5	-	53.1
TiO ₂	1.2	1.3	1.2	-	1.0
Al ₂ O ₂	15.6	14.4	14.8	-	19.3
Fe ₂ O ₂	9.8	11.8	11.1	-	10.7
MnO	0.2	0.2	0.2	-	0.2
MgO	3.5	4.1	3.7	-	4.1
CaO	8.0	8.4	8.2	-	9.8
Na ₂ O	2.7	2.6	2.8	-	1.6
K_2O	0.6	0.5	0.5	-	0.2
NK-VI					
SiO	55.9	56.0	57.2	55.1	49.1
TiO.	1.1	1.1	1.0	1.0	1.1
ALO.	15.7	15.4	14.5	18.7	21.2
Fe ₂ O ₂	9.9	10.5	10.7	8.4	11.6
MnO	0.2	0.2	0.1	0.2	0.2
MgO	5.3	4.8	5.2	4.0	5.2
CaO	9.0	8.8	7.7	10.2	9.9
Na ₂ O	2.6	2.8	3.1	2.1	1.7
K ₂ O	0.4	0.3	0.4	0.4	0.1
2 -					

第1表 (続き) Table 1 (Continued)

element glass in Pl glass in CPx glass in OPx matrix glass bulk rocl SiQ 60.9 61.9 63.2 61.4 54.1 TiQ 1.0 1.0 1.0 0.9 1.2 Al ₂ O 14.9 14.3 15.0 19.8 18.1 Fe ₂ O ₃ 8.2 8.7 7.5 7.1 11.4 Mo 0.2 0.2 0.1 0.1 0.2 MgO 3.9 3.3 2.9 1.7 4.1 CaO 7.2 6.8 6.1 4.9 8.4 Na ₂ O 3.1 3.1 3.3 3.2 2.3 NK-VIII SiO ₂ 60.9 63.9 60.8 71.9 56.0 TiO ₂ 1.2 1.2 1.2 0.6 1.2 Al ₂ O ₃ 9.0 8.3 8.7 2.9 10.7 MaO 0.2 0.1	INK-VII					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	element	glass in Pl	glass in CPx	glass in OPx	matrix glass	bulk rock
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO ₂	60.9	61.9	63.2	61.4	54.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiO ₂	1.0	1.0	1.0	0.9	1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	14.9	14.3	15.0	19.8	18.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe ₂ O ₃	8.2	8.7	7.5	7.1	11.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.2	0.2	0.1	0.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	3.9	3.3	2.9	1.7	4.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	7.2	6.8	61	49	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₂ O	31	31	33	3.2	2.3
NR-0 O.7 O.9 O.9 O.9 O.9 NK-VIII SiO2 60.9 63.9 60.8 71.9 56.0 TiO2 1.2 1.2 1.2 0.6 1.2 Al2O3 15.4 14.8 15.6 15.1 17.8 Fe2O3 9.0 8.3 8.7 2.9 10.7 MnO 0.2 0.1 0.3 0.1 0.2 MgO 2.7 2.1 2.3 0.4 3.3 CaO 7.0 5.7 7.7 3.7 7.7 Na ₂ O 2.9 3.1 2.9 4.4 2.6 K ₂ O 0.7 0.8 0.6 1.0 0.4 NK-IX SiO2 61.9 70.8 63.8 - 55.4 TiO2 0.9 0.9 0.9 - 1.0 Al2O3 14.8 12.8 14.1 - 18.0 Pie ₂ O3 8.5 5.2 8.5 5.2 8.9 Na ₃ O 2.9 2.4 K ₂ O 0.7	K.O	0.7	0.7	0.9	1.0	0.3
NK-VIII SiO ₂ 60.9 63.9 60.8 71.9 56.0 TiO ₂ 1.2 1.2 1.2 0.6 1.2 Al ₂ O ₃ 15.4 14.8 15.6 15.1 17.8 Fe ₂ O ₃ 9.0 8.3 8.7 2.9 10.7 MnO 0.2 0.1 0.3 0.1 0.2 MgO 2.7 2.1 2.3 0.4 3.3 CaO 7.0 5.7 7.7 3.7 7.7 Na ₂ O 2.9 3.1 2.9 4.4 2.6 K ₂ O 0.7 0.8 0.6 1.0 0.4 NK-IX 18.0 14.8 12.8 14.1 - 18.0 Fe ₂ O ₃ 8.5 5.2 8.5 - 9.9 9 MnO 0.2 0.2 0.2 - 0.2 MgO 3.5 1.9 3.0 - 3.9 <	m ₂ 0	0.7	0.7	0.9	1.0	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NK-VIII					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO ₂	60.9	63.9	60.8	71.9	56.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiO ₂	1.2	1.2	1.2	0.6	1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al_2O_3	15.4	14.8	15.6	15.1	17.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe ₂ O ₃	9.0	8.3	8.7	2.9	10.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.2	0.1	0.3	0.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	2.7	2.1	2.3	0.4	3.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	7.0	5.7	7.7	3.7	7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₂ O	2.9	3.1	2.9	4.4	2.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ₂ O	0.7	0.8	0.6	1.0	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NK-IX					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO.	61.9	70.8	63.8		55.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO	0.9	0.0	0.0	_	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 O	1/1.8	12.8	14.1	_	18.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_2O_3	14.0	12.0	14.1	-	10.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	re ₂ O ₃	0.5	5.2	0.5	-	9.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MinO	0.2	0.2	0.2	-	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO C-O	5.5	1.9	5.0	-	5.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0	4.5	5.8	-	0.9
K_{2O} 0.7 1.0 0.3 $ 0.4$ L (HP4) SiO ₂ 76.2 - .77.5 .76.0 - TiO ₂ 0.5 - 0.3 0.4 - Al ₂ O ₃ 13.3 - 12.7 13.7 - Fe ₂ O ₃ 2.4 - 1.9 2.0 - MnO 0.1 - 0.3 0.2 - MgO 0.6 - 0.5 0.2 - CaO 2.5 - 2.3 2.2 - Na ₂ O 3.2 - 3.4 4.0 - K ₂ O 1.3 - 1.2 1.3 -	INA ₂ U	2.9	2.8	2.9	•	2.4
L (HP4) SiO ₂ 76.2 - 77.5 76.0 - TiO ₂ 0.5 - 0.3 0.4 - Al ₂ O ₃ 13.3 - 12.7 13.7 - Fe ₂ O ₃ 2.4 - 1.9 2.0 - MnO 0.1 - 0.3 0.2 - MgO 0.6 - 0.5 0.2 - CaO 2.5 - 2.3 2.2 - Na ₂ O 3.2 - 3.4 4.0 - Na ₂ O 1.3 - 1.2 1.3 -	<u> </u>	0.7	1.0	0.8	-	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L (HP4)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	76.2	-	77.5	76.0	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0.5	-	0.3	0.4	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	13.3	-	12.7	13.7	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ₂ O ₃	2.4	-	1.9	2.0	-
MgO 0.6 - 0.5 0.2 - CaO 2.5 - 2.3 2.2 - Na ₂ O 3.2 - 3.4 4.0 - K ₂ O 1.3 - 1.2 1.3 -	MnO	0.1	-	0.3	0.2	-
CaO 2.5 - 2.3 2.2 - Na,O 3.2 - 3.4 4.0 - KaO 1.3 - 1.2 1.3 -	MgO	0.6	-	0.5	0.2	-
Na ₂ O 3.2 - 3.4 4.0 - K.O 1.3 - 1.2 1.3 -	CaO	2.5	-	2.3	2.2	-
K ₀ 1.3 - 1.2 1.3 -	Na ₂ O	3.2	-	3.4	4.0	-
	K ₀	1.3	-	1.2	1.3	-

降下火砕物のみかけ密度は後カルデラ期において系統 的に減少する傾向にあり,噴出物のスコリアからパミス への変化に対応して不連続に減少する。これらみかけ密 度の変化は組成の違いから期待される真密度換算時(乾 燥,常温常圧環境)の変化量よりも有意に大きいことか ら,発泡度が大きく異なっていることを意味する。スコ リアからパミスへの転換期にあたるのが噴出物Gであ る。噴出物Gは低密度(0.5g/cm³前後)と中密度(1.0 g/cm³前後)のパミスと高密度(1.2g/cm³以上)の縞状パ ミスで構成される。スコリアのみに注目すると二の倉初 期では見かけ密度が高く,二の倉後期ほどみかけ密度が 減少する傾向にある。各層準での最小値が系統的に変化 する一方で,最大値は2.0g/cm³前後の値の噴出物を保 有する層準と保有しない層準が不規則に繰り返されてい る.みかけ密度の大きい火砕物の存在が噴出物の岩相の 不均質性を決定しているといえる.

4. 主要元素組成

結晶およびガラス包有物の分析は SEM による EDS 分析(東京大学理学部地質学教室および筑波大学理工学 研究科), EPMAによる WDS分析(筑波大学分析セ ンター)によった。WDSの分析条件は加速電圧 20.0 kV,電流値1.0×10⁻⁸ Aで,分析中のナトリウムの 揮発が押さえられるように設定した。試料は2通りの処 理を行った。一つは試料全体をエポキシ樹脂で固めた後 研磨し薄片試料とし,もう一つは試料を砕き結晶のみを 採取した後,大きさをそろえて薄片上に固定し研磨し た。前者は結晶の大きさによる組成の違いの有無を確認 する目的を,後者は切断位置の影響を排除する目的をも つ.

全岩分析には XRF(筑波大学理工学研究科)を用いた。 ガラスビード試料を作成し,分析条件等は Nakano *et al.* (1997)に従った.

4.1 結晶組成

主要鉱物として、すべての層準で、斜長石、単斜輝石、 斜方輝石,鉄ーチタン酸化物,燐酸塩鉱物の存在が確認 された。また、層準によりカンラン石を含む。燐酸塩鉱 物を除くこれらの結晶について分析を行った。斜長石の アノーサイト含有量,斜方輝石および単斜輝石の Mg# (MgO/FeO*+MgO モル比)の各噴出物毎の頻度を 各々第3図 b), c), d)に示した。斜長石ではスコリア活 動からパミス活動に対応してアノーサイト含有量が系統 的に減少する。噴出物 G 前後で結晶組成は大きく異な り,噴出物G以降組成はバイモーダルな値を示す。し かし、噴出物Fの斜長石中のアノーサイト含有量は二 の倉スコリアの値に匹敵しており、一時的に逆センスの 進化が起きている。斜方輝石および単斜輝石の Mg #値 に系統的な変化は認められず、斜長石とは振る舞いが異 なることが明らかになった。この振る舞いの違いは単純 な結晶分化過程では説明されない。

4.2 ガラス包有物組成

斜長石,単斜輝石,斜方輝石,カンラン石中に含まれ るガラス包有物およびマトリックスガラスの主要元素組 成を分析した。包有物の分析試料は顕微鏡下において二 次結晶や気相がみられないガラス1相からなるものを選 びだした。これらの組成値(wt.%)は合計が100%にな るように再計算を行って用いた。これらの結果は各噴出 ユニット別,包有する結晶別にその平均値を算出し第1 表にまとめた。第3図 e)に各噴出物の各々の結晶に含

Fig. 4 Variation diagrams of normalized major element oxide vs. SiO₂ wt. % of glass inclusions and matrix glasses. A to G and NK are stratigraphic eruption units of Nakanoumi and Ninokura stages, respectively.

十和田火山後カルデラ期の降下火砕物の推移(久利・栗田)

Fig. 5 Variation diagram of FeO*/MgO vs. SiO₂ wt. % of glass inclusions, matrix glasses and bulk rocks. The notation of stratigraphic eruption units is the same as in Fig. 4. Boundary between tholeiitic series (TH) and calk-alkalic series (CA) is taken from Miyashiro (1974).

まれるガラス包有物およびマトリックスガラスの SiO₂ の頻度を示した.スコリア活動からパミス活動に対応し て極めて系統的に SiO₂が減少しており,斜長石同様に 噴出物 G 前後で組成は大きく異なる.また,噴出物 F での一時的な逆センスの組成進化も斜長石の結果と調和 的である.しかしながら,斜長石とは異なりユニモーダ ルな組成分布を示した.

第4図にガラス包有物の各酸化物濃度をSiO₂に対し てプロットした。カルデラ形成以降,二の倉期から中ノ 湖期にかけてすべての成分でほぼひとつの直線分布を形 成する。包有物の平均組成が母結晶の種類によりわずか ながら異なるものの(第1表),包有物取込み後の各母結 晶と包有物の二次的な反応から期待される組成変動は認 められない。以上のことから個々のガラス包有物はある 時期のマグマ組成を反映していると解釈した。

第5図にガラス包有物およびマトリックスガラス,全 岩のSiO₂とFeO*/MgO重量比の相関を示した.二の 倉期(NK)の組成はいずれもソレアイト系列にプロット される.一方,噴出物Fおよび噴出物Gは全岩ではソ レアイト系列にプロットされるものの,ガラス包有物組 成はカルク-アルカリ系列にプロットされる.これらは 単純な結晶分化過程では説明できない.

5. 考察

本研究においてはガラス包有物がある時間断面でのマ グマあるいはメルト組成を反映していると考え,包有す る結晶および各結晶に包有されたガラス包有物の主要元 素組成の分析を行った.ここでは、マグマは固気液全相 を、メルトはその液相を意味する.以上分析の結果、斜 長石のアノーサイト含有量と輝石中の Mg #に相関が認 められないこと、包有物の平均組成が母結晶の種類によ りわずかながら異なることが明らかになり、これらの要 因として以下の2つがあげられる.1)アノーサイト含 有量が飽和水蒸気圧の変化を大きく反映している.2) 結晶の種類により時間的あるいは空間的に異なる情報を 有している.いずれかの原因よるものかあるいは両方か、 このような観点から結晶とメルトの平衡条件について検 討する.

第6図に各噴出物について斜長石と斜長石に含まれる ガラス包有物の Ca/Na モル比の相関および斜方輝石と 斜方輝石に含まれるガラス包有物,単斜輝石と単斜輝石 に含まれるガラス包有物の Fe/Mg モル比の相関を示し た.累帯構造が明瞭な結晶については包有物が含まれる 領域の結晶組成を示し,累帯構造が不明瞭あるいは累帯 構造の境界部にガラス包有物が存在する結晶については 一つの包有物につきコアおよびリムの両方の組成の値を 示した.実線は結晶ーメルト間の平衡交換分配係数 K_D (Grove *et al.*, 1982; Sisson and Grove, 1993)を示す.た だし,これらの実験は全岩組成で SiO₂が 65%未満の系 であり,噴出物 A-E への適応については十分な議論は できない.

斜長石の平衡交換分配係数 K_Dは環境に応じて変化し、 含水量が多い、あるいは圧力が大きいときに値は大きく

第6図 斜長石と共存するガラス包有物のCa/Na (mol)の相関図(上段)および単斜輝石および斜 方輝石と各々共存するガラス包有物中のFe/ Mg (mol)の相関図(中段・下段).実線は各結晶 とメルト間の交換平衡分配係数の傾きを示す (斜長石: Sisson and Grove, 1993;輝石: Sisson and Grove, 1993).噴出ユニットの表記は 第4図参照.

Fig. 6 Molar Ca/Na plot of plagioclase and coexisting glass inclusion (upper). Molar Fe/Mg plot of clinopyroxene and coexisting glass inclusion (middle). Molar Fe/Mg plot of orthopyroxene and coexisting glass inclusion (lower). Solid lines show exchange equilibrium coefficients K_D between plagioclase and melt (Sisson and Grove, 1993) (upper) and between pyroxenes and melt (Grove *et al.*, 1982) (middle and lower). The notation of stratigraphic eruption units is the same as in Fig. 4.

なる. ただし, 無水条件下では圧力 20 kb 程度でも Kn の値は2.0 未満である。斜長石およびメルトの組成は二 の倉期から中ノ湖期にかけて Ca が減少しており, 珪長 質化したことが読み取れる.個々の噴出物に注目すると, 二の倉期ではほぼ Kp~3.4 に沿った分布を示す。詳細 については、久利・栗田(投稿中)に記載した、一方、噴 出物Gはリムの値の下限をKp~1.7に持ち、コアの値 は高い K_D域にプロットされる.またコア・リムともに, 原点を通る直線ではなく、やや水平な分布を示す。これ は,結晶組成に較べてメルト組成が広範囲であることを 示し,結晶とメルトが非平衡な環境にあったことを意味 する. Kpが環境に応じて変化する系においては、この ような環境を作る要因はいくつか考えられるが、その一 つとして結晶成長後より Ca/Na の低いマグマあるいは メルトが加わることがあげられる。噴出物 F では K_D ~3.4 に沿った分布を示し,噴出物 A-E は噴出物 G と 同様やや水平な分布傾向を示した.

単斜輝石・斜方輝石-メルト間の平衡交換分配係数 K_bは組成,温度,圧力依存が小さい.二の倉期では 比較的平衡状態に近い値を示すものの,中ノ湖期の分析 結果は結晶の値がほぼ一定であるにも関わらず,メルト の値のみが大きく変化しており,平衡状態の値から大き く外れる.特に平衡線から右の領域にプロットされるも のが多い.このことは,未分化なマグマから晶出した結 晶がより分化したFe/Mgの高い値を持つマグマある いはメルトへ混入したことを意味する.このような環境 は噴出物Gで観察される.逆に平衡線から左の領域に プロットされるものについては分化した組成をもつマグ マから晶出した結晶がより未分化なマグマあるいはメル トに混入したことを意味する.このような環境は噴出物 F で観察される.噴出物 A-E は前者の傾向が顕著であ る.

斜長石の高い K_p の値は二の倉期,中ノ湖期を通じて, 十分な飽和水蒸気圧があったことを示す.ゆえに,一つ 目の要因については無視できないことが示された.また, 噴出物 F では K_p が環境に応じて変化しやすい斜長石に おいて平衡が成り立っているにも関わらず,分化した組 成をもつマグマから晶出した輝石がより未分化なマグマ あるいはメルトに混入したことが示唆された.このこと は結晶の種類により時間的あるいは空間的に異なる情報 を有していることを意味し,二つ目の要因についても重 要であることが示された.

いずれの結果からも転換期以降は非平衡な環境である ことが示された.非平衡の原因と推測される Ca/Na が 低く,Fe/Mgの高いメルトは,結晶分化あるいは地殻 の部分熔融時に生成される.パミス噴火活動期の高 SiO₂のガラス包有物がカルク-アルカリ系列にプロット されることを考えると地殻の部分溶融メルトである可能 性が高い.つまり,Gの活動前に地殻の溶融が始まった ことが示唆される。噴出物Gは低・中密度のパミスと高 密度の縞状パミスで構成されており、主要元素の組成変 化と揮発性元素の挙動の関係についてなど、詳細につい ては今後の研究課題である。

6. まとめ

本研究により十和田火山後カルデラ期にはマグマ組成 が系統的に珪長質へと変化することが示された。火砕物 はスコリアからパミスへと遷移しており,その活動期は 明瞭に別れる。

スコリアとパミスではみかけ密度の違いから発泡度が 大きく異なることが示された.転換期の噴出物Gは低・ 中密度のパミスと高密度の縞状パミスで構成される. また,本研究においてはガラス包有物がある時間断面で のマグマ組成を反映していると考え,各結晶に含まれる ガラス包有物の化学組成の分析を行った.斜長石および ガラス包有物の組成ともに系統的に珪長質化することが 明らかになった.珪長質化は噴出活動Gから始まり, 珪長質化プロセスの転換期には一時的に組成的に逆セン スの進化が起こったことが確認された(噴出物F).

結晶組成とガラス組成は転換期において地殻の溶融メ ルトがマグマに加えられることにより急激に非平衡な環 境になることが示された.

謝辞 本報告は筑波大学地球科研究科在籍中の分析結果 に基づく. EPMA の分析に際し筑波大学分析センター の西田憲正氏に,XRF の分析に際し筑波大学地球科学 系の中野孝教氏に御指導いただいた。東京大学理学部地 質学教室の皆様には SEM の利用を快く承諾していただ いた.十和田火山のプリニアン噴火火砕物について筑波 大学地球科学研究科の郭 資敏氏より多くの情報をいた だいた。また,環境地質部の高田 亮氏には査読をして いただき,きめ細かいアドバイスを頂いた。この場を借 りて皆様にお礼申し上げる.

文 献

- Clocchiatti, R. and Massare, D. (1985) Experimental crystal growth in glass inclusions: the possibilities and limits of the method. *Contrib. Mineral. Petrol.*, **89**, 93–204.
- Ferriz, H. and Mahood, G. (1987) Strong compositional zonation in a silicic magmatic system. J. Petrol., 28, 171-209.
- Grove, T. L., Bryan, W. B. and Derrick, E. G. (1982) Clinopyroxene crystallization in FAMOUS basalts: Phase equilibria at low pressures (abstr). EOS Trans. Amer. Geophys.

Union, 62, 427.

- Hayakawa, Y. (1985) Pyroclastic geology of Towada volcano. Bull. Earthq. Res. Inst., 60, 507-592.
- Hochstein, M. P. (1995) Crustal heat transfer in the Taupo Volcano Zone (New Zealand): comparison with other volcanic arcs and explanatory heat source models. J. Volcanol. Geotherm. Res., 68, 117-151.
- Hunter, A. G. (1998) Intracrustal Controls on the Coexistence of Tholeiitic and Calk-alkaline Magma Series at Aso Volcano, SW Japan. J. Petrol., 39, 1254–1284.
- Hunter, A. G. and Blake, S. (1995) Peterogenetic evolution of a transitional tholeiitic — calcalkaline series: Towada volcano, Japan. J. Petrol., 36, 1579–1605.
- 市川八洲夫(1991) 十和田火山におけるマグマ溜ま りの進化の研究,茨城大学理学部修士論文.
- Kaku, T. (1997) The restriction for the variations in two plinian eruptions and their consequences on Towada volcano. *Master's thesis, Univ. of Tsukuba.*
- 久利美和・栗田敬(投稿中) 十和田火山における後 カルデラ期のスコリア活動の推移。
- Miyashiro, A. (1974) Volcanic rock series in island arc and active continental margins. *Amer. J. Sci.*, **274**, 321-355.
- Nakano, T., Jeon S.-R. and Sueno, S. (1997) X-ray fluorescence analysis of rock samples using Philips PW1404(1): simultaneous determination of major and trace elements using glass beads of GSJ igneous rock reference samples. Ann. Rep., Inst. Geosci., Univ. Tsukuba, 23, 63-68.
- Roedder, E. (1979) Origin and significance of magmatic inclusions. Bull. Mineral., 102, 487– 510.
- 佐々木龍男・勝井義雄(1981) ガラスビーズを使っ た軽石の密度測定法。火山 第2集,26, 117-118.
- Sisson, T. W. and Grove, T. L. (1993) Experimental investigations of the role of H2O in calk-alkaline differentiation and subduction zone magmatizm. *Contrib. Mineral. Petrol.*, 113, 143-166.
- 谷口宏充(1972) 十和田火山の岩石学的研究. 岩鉱, 67, 128-138.

Watanabe, T., Hirama, T., Yuasa, M, Terada, S

and Fujioka, K. (1992) Glass inclusions with microglobules in plagioclase and pyroxene phenocrysts of volcanic rocks from the Bonin arc, LEG 126. Proceedings of the Ocean Drilling scientific results, 126, 171-183.

(受付:1999年8月19日;受付:1999年9月3日)