けい光 X 線によるけい酸塩岩石の主成分の自動分析

後藤 隼次*

Automatic Analysis of Major Elements in Silicate Rocks by X-ray Fluorescence Spectrometry

Науајі Сото

Abstract

The optimum conditions of silicate analysis have been investigated by X-ray fluorescence spectrometry. Sample preparation techniques in common use today are of two manners: the one is glass disc method and the other pressed powder method. The former has been previously reported in detail by H. HATTORI (1971), T. OHMORI and E. OHMORI (1976). This paper describes pressed powder method using lithium tetraborate as binder, i. e., same portions (approximately 1 g) of finely powdered sample and anhydrous lithium tetraborate were thoroughly mixed for 5 min. in a mixer-mill, then the mixture was pressed into aluminum ring (ϕ 35 mm) at 300 kg/cm².

The instrument used was the Toshiba Electric Co. type AFV-202F X-ray spectrometer, and X-ray was operated at 40 kV and 30 mA on the rhodium target tube as the source of primary radiation. The fluorescent intensity of $K\alpha$ line was measured triplicate for each element. Running conditions on automatic analysis of 10 major elements (Si, Ti, Al, Fe, Mn, Ca, Mg, Na, K, P) in silicate rocks are given in Table 4. The concentration values were evaluated from working curves which were prepared using various standard rock samples.

1. 緒 言

けい光X線分析法は試料処理能力が湿式分析法に比べて著しく大きく,鉄鋼,非鉄金属,窯業などの各企業ではコンピューターとオンラインさせて完全自動化されており,管理分析には不可欠なものとなっている.

地質調査所技術部化学課では、けい酸塩岩石分析の迅速化、省力化をはかるため、昭和 49 年度工業技術院設備整備費で東芝製 AFV-202F 型けい光X線自動分析装置を導入し、種々検討を加え、けい素、チタン、アルミニウム、鉄、マンガン、マグネシウム、カルシウム、ナトリウム、カリウム、りんの 10 成分の自動化プログラムを完成させた。ここではその検討結果と確立された測定条件について報告する。なお、けい光X線分析の場合は元素態で定量されるが、けい酸塩岩石を取扱う場合には便宜上成分形で表示した。

本研究を行うに際し地質部服部仁技官,技術部藤貫正 技官の協力をえた.ここに深く感謝する次第である.

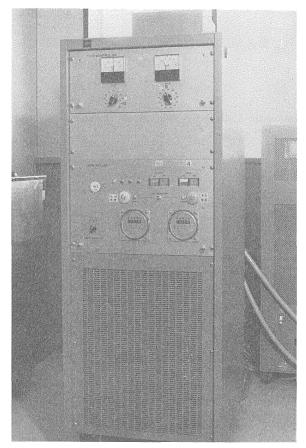
*技術部

2. 分析装置の特徴

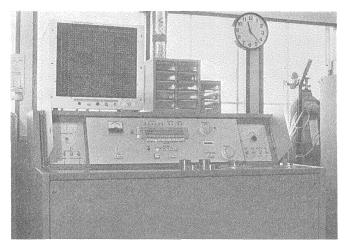
AFV-202F 型けい光X線自動分析装置について(五十嵐・村田,1971) 説明している。本装置の導入にあたっては、できるだけ使いやすくするため、若干の改良を加えたので、主要部について説明する。

2.1 X 線電源部

X線電源部は2次側検出,1次側および2次側制御方式を採用しており、最高出力は3kW,電圧は60kV,電流は80mAまで負荷できる.X線管球切換器を内蔵し、パネル前面のチュブセレクタースイッチ切換により高圧系統、冷却水系統も自動的に切換えられる(第1図).


2.2 分 光 系

検出器交換機構,分光結晶交換機構,スリット交換機構,試料室操作パネルなどからなっている(第2図).


2.2.1 検出器交換機構

検出器はガスフロー比例計数管 (pc) と, シンチレーション計数管 (sc) の 2 種類を備え, PR ガスを用いる.

地質調査所月報 (第27巻 第9号)

第1図 X線電源部

第2図 自動ゴニオメーター部

pc の場合, けい光X線入射窓は通常 $4 \mu m$ のマイラー 膜を使用しているが Na_2O ,MgO などの軽元素側の成分 の場合は $1 \mu m$ のマイラー膜にとりかえて使用する.

2.2.2 分光結晶交換機構

AFV-202F 型けい光X線自動分析装置は 4結晶 交換機構であったが、当所の使用目的には最低 6 結晶 (RAP・ADP・EDDT・TX-1・Ge(111)・LiF)¹⁾ を必要とするので 6 結晶交換機構に改良した.

2.2.3 スリット (コリメータ)

スリットは Fine (間隙 0.15 mm), Coarse (間隙 0.50 mm) の2種類を備えている。 検出器に pc を用いる場合には主に Coarse, sc を用いる場合には Fine を用いる ことが多い。 Coarse と Fine ではけい光X線強度は 1/2-1/3 に低下する。測定に近接線が影響するときは Fine を用いる必要がある。

2.2.4 試 料 室

試料は5個装てんできる大試料室と,測定中でも試料の交換を可能にするための小試料室からなっている.

試料の交換は従来、レバーの上げ下げによって行って いたが、レバーが手前に突出しており、操作に不便であ るため、押しボタン方式に改良した.

試料に対する一次 X線の照射は下面照射方式である. 管球のターゲット面と試料面の距離は 10 mm で, 市販 の他の装置に比べて短い. また測定中の試料は 30 rpm のスピンが可能である.

試料ホールダーは銅,鉄およびアルミニウム製の 3 種類 (測定面,大型 ϕ 32 mm,小型 ϕ 28 mm)を準備した。

2.3 計数系

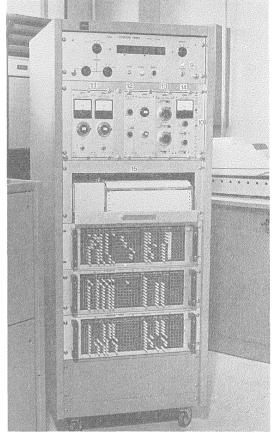
ゲインコントロール,波高分析器 (PHA),レートメーター,カウンタータイマー,レコーダー,プログラムユニットなどを備えている (第3図).

2.3.1 波高分析器 (PHA)

波高分析モードとしては INTEGRAL, NORMAL, WINDOW の3種が使用できる。また BASE LINE の自動スキャンニング装置を内蔵して簡単にエネルギースペクトルを記録できる。

2.4 自動化システム

2.4.1 操作パネル


操作はすべて操作パネル上の押ボタンまたは切換えスイッチによって行われる. 30 元素(ポジション)まで測

1) RAP : Rubidium hydrogen phthalate ADP : Ammonium dihydrogen phosphate

EDDT: Ethylenediamine-d-tartrate

TX-1: Indium antimonide Ge(111): Germanium

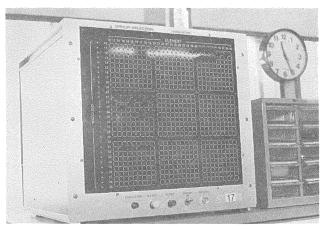
LiF : Lithium fluoride

第3図 計数記錄装置部

定条件(2θ 位置,検出器,PHA,分光結晶,スリット,ゲイン,測定時間)の設定が可能である。あらかじめ指定元素,バックグランドなどについて,これらの諸条件の設定をすませてあれば,目的元素の押ボタンを押せば自動的に必要な条件を再現する。また自動(auto)と手動(manual)は切換スイッチで簡単に切換可能である(第4 図)。


2.4.2 プログラムユニット

ピンボードにピンを差し込むことにより,分光結晶, 検出器,スリット,ゲインコントロール,計数時間など の設定のほか,ポテンショメーターによって 2θ °停止 角度,PHA のデイスクリレベル (lower および upper) をそれぞれ設定できる.


2.4.3 グループセレクター

多種試料で多元素の分析を行う場合,グループセレクターを接続すると,分析する元素の組合せが 30 種類まで自動化できる。たとえば試料 5 個のうち 2 試料はけい酸塩岩石で,SiO₂, TiO_2 , Al_2O_3 , Fe_2O_8 ,MnO,CaO,

地質調査所月報 (第27巻 第9号)

第4図 操作パネル部

第5図 グループセレクター

 K_2O , P_2O_5 を定量し、 3 試料が炭酸塩岩石で、 SiO_2 , Fe_2O_8 , Al_2O_8 , MnO, Sr, Ba, P_2O_5 を定量する場合も、連続して所定の条件で測定することができる(第5図).

2.4.4 データプロセッサ

分析グループ,分析元素,試料番号,計数値などをプリントし,さらに最初に測定した試料の計数値と2番目以後の試料の計数値との比が同時にプリントされる(第1表).

3. 測定条件の比較

3.1 試料調製法

粉末試料を取扱うのに微粉末にしたものを使用することが第1条件である(服部・柴田,1969;内川ほか,1962)といわれている。当所の石川式メノウ攪拌擂潰機による一般岩石粉末試料を、さらに実験用遊星型メノウボールミル(伊藤製作所)で30分間微粉砕する。微粉末試料2.0gをはかり取り、HEIKO社製混合容器(タ

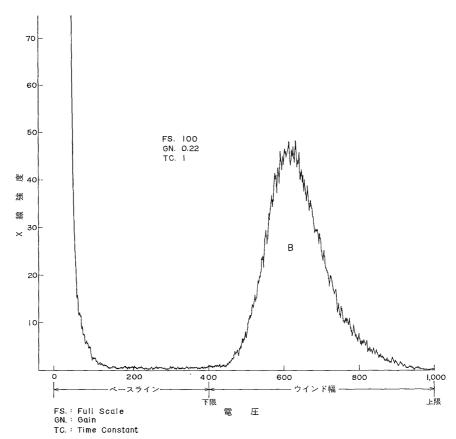
ングステンカーバイト製) に入れ,同社製 VIBRATING SAMPLE MILL で5分間粉粋する. これから試料 1.0 g をはかり取り、無水4ほう酸リチウム 1.0g をメノウ 乳鉢(または Mixer-Mill)で混合し、プレス用鉄製台の 上に直径 35 mm のアルミニウムリングを置いた中に入 れ、上からスプーンで押し固める。 つぎにプレス用鉄製 台を上にのせ,アルミニウムリングをサンドイッチ状に 電動プレスに挾み, はじめに 50-100 kg/cm² の圧力をか け, 引続き 300 kg/cm² の圧力をかける. その圧力を約 30 秒間保った後, 少しずつ圧力をぬいてゆき, 成形試 料をとり出す。この方法を用いて作製した試料は 10 成 分を定量することができる. 成形に使用されたアルミニ ウムリングは、 試料ホールダーの中にかくれるので、1 次X線が照射されない. したがってアルミニウムも定量 可能である。測定する試料は事前に十分に付着水を除く 必要がある. すなわち試料中に付着水分があると測定が 真空中で行われるために, 試料を装置に入れると真空度

	けい光X線によるけい酸塩岩石 第1表 データプロセッサによるプリント紙		石													
	第 1	表	データ	マプロ	也,	y †	<i>+ i</i>	ے ح	t ?	5 :	゚゚゚゚゚) :	/	卜紅	Ę	
グ)	ν -	プ番	号										2	5.	_	
元	素	番	号										1	6.	_	
															С	
試	料	番	号											1.	_	
															C	
4400 3	4= 38	사이 =1	. Mat., Into		(1	5	4	7	1	5.	M+	
(3	毕訊 回線	科訂 製返	数値 しの場合	計)…	}				1	5	4	2	7	9.	M+	
				•	(1	5	3	9	8	9.	M+	
															С	
試	料	番	号											2.	_	
					(1	0	Λ	0	1	4	C	
未	印試	料計	十数値 しの場合											4. 9.	+	
(3	回約	梟返	しの場合)…					1					9. 7.	+	
			計数値		•	a	2	2	_	-				-	+ ÷	
1	ረዘ ጨላ	11 =	1日 秋 胆		(1	6	2	a	ے و	3	n	n	n	0	S	
標	集試	料台	計数值	•••••	1	6	2	a	Q Q	٠. ع	n	Λ	n	0	≃	
ν	シ	才	値		(-1	U	_	J	O		8				_	
-	•	.,	lim.							٠.		•	J	Ů		
														0	С	
ы	_	127	- 1 全											3.	_	
以	下	可	様							0	7	0	9	7	С	
														7. 8.	++	
														3.	+	
					2	Q.	3	q	વ	8.				-	÷	
										3.					S	
										3.					~	
					-	Ŭ	_	Ü	Ŭ		6					
															C	
														4.	C	
														4.	С	
										6	8	9	8	2.	+	
														2.	+	
														3.	+	
					2	0	6	4	0	7.				-	÷	
										3,					S	
										3.					~	
										0.	. 4	4	5	8		
															С	
														5.	_	
														•	С	
										3	0	8	3	4.	+	
										3					+	
										3	0	7	3	5.	+	
						9	2	6	8	0	.0	0	0	0	÷	
					4					3					S	
					4	6	2	9	8	3	.0	0	0	0	\simeq	
										0	. 2	0	0	2		

が一時的に低下し、一定の真空にもどるには数分間かかると同時に、軽元素測定値の再現性が低下する.

成形されたペレット試料はデシケーター中に入れ,真空ボンプで減圧にした状態で1日放置した後,測定試料とすると良い. また成形されたペレット試料の長期保存については,現在検討中であるが,デシケーター中に保存する方がよいようである.

3.2 エネルギー分析


各元素のエネルギー波高分析はけい酸塩岩石の化学組成に近いものであることが望ましい。けい酸塩岩石中の10成分のエネルギー波高分析を行う場合,含有量の多い Al_2O_3 , SiO_2 , K_2O , CaO, TiO_2 , Fe_2O_3 はガラス円板試料を用い,含有量の少ない Na_2O , MgO, P_2O_5 , MnO については,ガラス円板試料では明らかなシグナルビークが示されないので,ペレット試料を用いた。

エネルギー波高分析の最良の求め方は、ゲインをコントロールしながらシグナルビーク位置を求めることである。すなわち、ゲイン(検出器の印加電圧)を変動させることによって、求めるシグナルビーク位置を高いエネルギー側へ、また低いエネルギー側へ移動し、その最大のピークの位置が記録紙上の500(5V に相当する)前後のところで、ピーク幅の最後の位置が800-900のところになるようにゲインを選定することが最適である。第6 図に一例を示したが、ゲイン0.22 のB より、ゲイン0.17 の A がよい求め方である。

エネルギー液高分析値は室温の変化などによって液形位置が移動するために分析値が異なってくる。すなわち,第7回は温度変化による,アルミニウムのエネルギー液形の シグナル ピーク位置のずれを示したものである。温度が高くなると高い方へ移動していることが認められ,アルミニウム板の場合でピーク位置が $16^{\circ}\mathrm{C}$ の時550, $22^{\circ}\mathrm{C}$ の時575, $26^{\circ}\mathrm{C}$ の時700 となっている。岩石標準試料 (AGV-1) の使用の場合も同じく移動が見られる。とくに軽元素側の成分については,測定中の温度に注意する必要があり,定量分析を行うためにはエネルギー波高分析を行った時の温度条件で測定を行う必要がある。

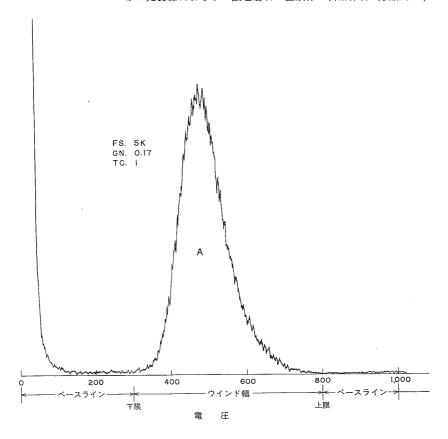
3.3 管球への印加電圧,電流

鉄についてタングステン管球(W 管球),けい素についてクロム管球(Cr 管球)およびロジウム管球(Rh 管球)を用いて電圧,電流値の変化に対するけい光X線強度(cps)を調べた.試料はいずれも岩石標準試料で,鉄は AGV-1 (U.S.G.S),(Fe $_2$ O $_3$ ・6.83%),けい素は JG-1 (G.S.J),(SiO $_2$ ・72.24%)を用いた. 測定条件は,W管球の場合,分光結晶 LiF,検出器 sc,Cr および Rh

第6図 エネル

管球の場合は分光結晶 TX-1, 検出器は pc である。 それぞれの測定結果を第 8, 9, 10 図に示した。一般に電圧,電流ともに大きいほどけい光X線強度 は 増大するが,Rh 管球の場合は第 10 図に示すように, $50\,kV-30\,mA$ では $14,000\,cps$, $35\,kV-40\,mA$ で $16,200\,cps$, $25\,kV-50\,mA$ で $15,800\,cps$ と変化し,低電圧でも高電流の方が励起効率のよいことがわかる。

3.4 管球と分光結晶

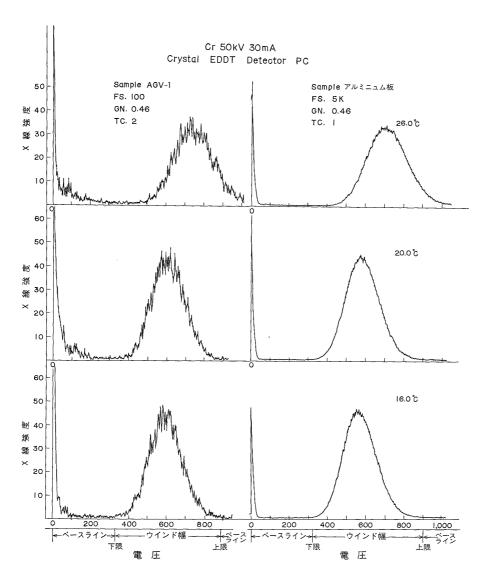

一般に軽元素の定量には Cr 管球が、また重元素の定量には W 管球が使用されているが、けい酸塩岩石の主要成分分析において、操作の途中で X 線管球を交換することは、時間の浪費である。自動化の建前からも、測定を中断して管球を交換する手間は面倒である。この問題解決のために、けい酸塩岩石の主要成分を全部測定できる Rh 管球を導入し、けい酸塩岩石中の主要成分について、Rh 管球と Cr 管球との比較検討および分光結晶の比較検討を行った。試料は岩石標準試料 JG-1、G-2、AGV-1、BCR-1 のガラス円板試料を用いた。それぞれ

の条件下におけるけい光X線強度を第2表に示した。第2表から Cr 管球の方がけい光X線強度が大きい成分は, K_2 O,CaO,TiO $_2$,また Rh 管球の方が大きい成分は, Na_2 O,MgO, Al_2 O $_3$,SiO $_2$, P_2 O $_5$, Fe_2 O $_3$ である。ただし MnK α と Cr 管球からの一次X線 CrK β とは近接していて分離不能なため,Rh 管球のみの値を表示した。Cr 管球が適している K_2 O,CaO,TiO $_2$ も,測定時間を長くすることによってその欠点が補えるので,単一管球で測定する建前からも Rh 管球を使用して,プログラムを設定することにした。

分光結晶の比較では、 SiO_2 の場合 Cr 管球、Rh 管球とも EDDT よりも TX-1 の方が 6 倍以上の強度をもち、 K_2O 、CaO の場合は LiF が TX-1、EDDT よりもよく、 Fe_2O_3 の場合は LiF が Ge(111)、EDDT よりもよい。

3.5 各成分の X 線強度値

Rh 管球を使用し、第2表に示す最適条件にもとづく 各成分のX線強度を第11図に示した。Na₂O, MgO,

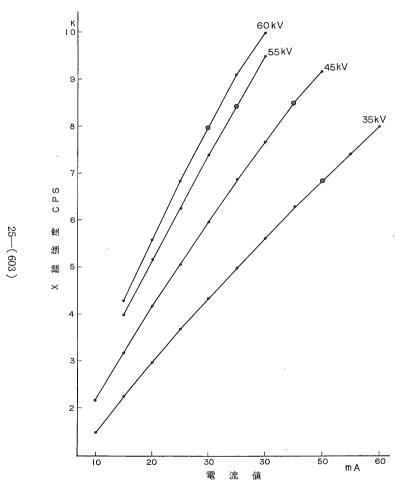

ギー波高分析

P₂O₅ はけい光X線強度が非常に弱く, バックグランド の変動も大きい. これらの原因としては軽元素であり, しかも濃度も低く, また吸収, 強調効果などマトリック スの影響等が考えられる。 またこれらの元素を定量する には、バックグランドを求めなければ正確でないことが わかる. 他の成分はいずれもシャープなピークを示し, 単位パーセントあたりの カウント 数は Al_2O_8 ; 32 cps, SiO_2 ; 228 cps, K_2O ; 1,552 cps, CaO; 1,517 cps, TiO_2 ; 818 cps, MnO; 3,888 cps, Fe₂O₃; 1,331 cps である. と くに SiO₂ の場合, 定量に際して, 一般的には Cr 管球, EDDT または PE の分光結晶を用いて行われているが, 最近、TX-1の開発により、Si に対するX線強度が数倍 以上得られるようになった. 村田ほか (1975) は TX-1 (分光結晶 InSb(111) の商品名) の分光結晶を用い, 測 定可能スペクトルは, Kα で 14Si-46Pd, Lα で 38Sr-92U, $M\alpha$ で 74W-92U であり、また 14Si から 20Ca の7元素について3結晶 (InSb(111), Ge(111), EDDT (0.20)) の比較を行い, とくに Si の強度がよいことを指 摘している.

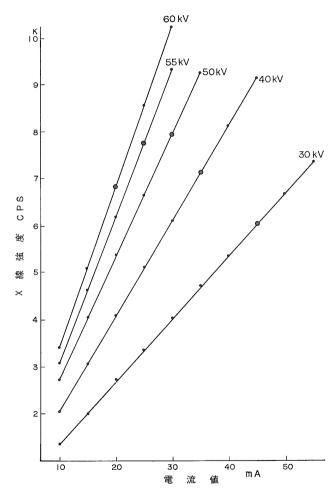
本実験においても JG-1 (SiO₂ 72.24%) のガラス円板 試料を使用し、SiO₂ について Cr 管球、Rh 管球と TX-1、EDDT との比較を行った(第 12 図)。Cr 管球の場合は Rh 管球に比べて高出力であるにもかかわらず、けい光X線強度が低いことがわかる。すなわち、EDDT を用いたときは、Cr 管球の場合では 2,050 cps 値に対し、Rh 管球では 2,900 cps、TX-1 を用いたときは 12,400 cps に対し、17,600 cps で、いずれも 1.4 倍の強度を示した、また分光結晶については TX-1 と EDDT の差は大きく、TX-1 は約 6 倍に近いけい光X線強度を示した。

3.6 試料作製法の違い

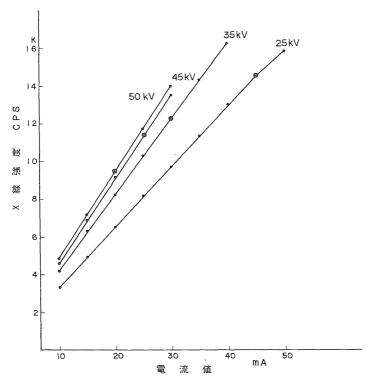
ガラス円板試料の作製法については、NORRISH and HUTTON (1969) らはほう酸リチウムに酸化ランタンを含む融剤で融解して9成分を測定し、Na については粉末を用いている。また、服部 (1971)、大森貞子・大森えい (1976) らは試料1と融剤に無水4ほう酸リチウム 10

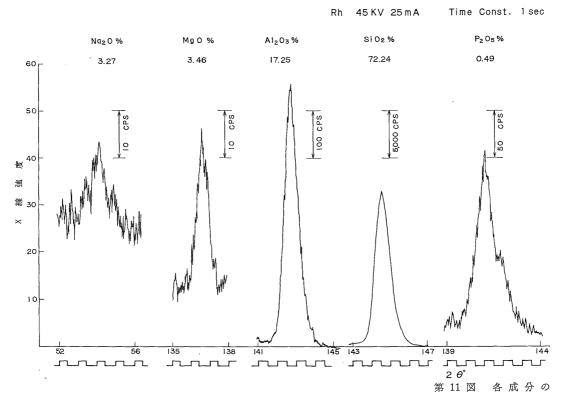


第7図 温度変化のエネルギー波高分析


の割合で混合して融解し、7成分の定量を行っている。

本実験では岩石標準試料 JB-1 を用い,前に記した調製法に従って,無水 4 ほう酸リチウムの混合およびパノラック混合の 2 種類のペレット試料,ならびに服部が作成したガラス円板試料の計 3 試料について,最適測定条件で 10 成分のけい光X線強度を求めた結果を第 3 表に示した。本表には PC 検出器のマイラー膜の厚さの違いによる X線強度も示した。


ガラス円板試料はペレット試料の試料量から比較すると約 1/5 に相当する。またX線照射面積は,ガラス円板試料 (ϕ 28 mm) が小さく,ペレット試料 (ϕ 32 mm) の方が大きい。しかし単位試料量あたりのけい光X線強度は,ガラス円板試料の方が 5 倍以上高い。ペレット試料は各成分によって異なるが,ガラス円板試料に比べて試料量が 5 倍も用いられているにもかかわらず,1.3-4.2 倍の強度しか得られていない。しかし,X 線強度値 (cps)

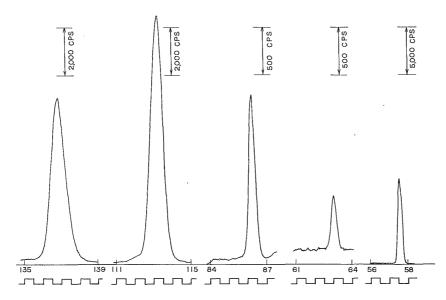

第8図 電圧,電流変化による鉄のX線強度 (W 管球)

第9図 電圧,電流変化によるけい素のX線強度 (Cr 管球)

第 10 図 電圧,電流変化によるけい素のX線強度 (Rh 管球)

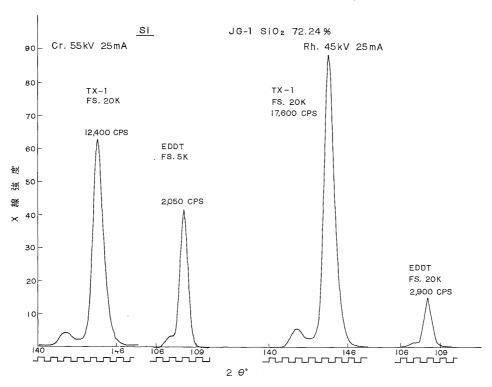
26-(604)

けい光X線によるけい酸塩岩石の主成分の自動分析(後藤隼次)


第2表 X線管球と結晶の差異によるX線強度

. →	- E.		S - 1 - > -			X 線	管 球
含		分光結晶	ゴニオメ <i>ー</i> ター 2θ°	検 出 器	スリット	Cr 50 kV 30 mA cps	Rh 45 kV 25 mA cps
Na ₂ O MgO	3.27 3.46	RAP ADP	54.25 136.47	PC "	C ″	27 37	36 39
$\mathrm{Al_2O_3}$	17.25	EDDT	142.40	"	"	350	545
SiO_2	72.24	TX-1 EDDT	144.55 107.98	"	"	11,400 1,800	15,800 2,500
P_2O_5	0.49	Ge(111)	140.76	"	"	110	185
K ₂ O	4.56	LiF TX-1 EDDT	136.56 60.02 50.28	!! !!	" " "	41,000 14,400 7,400	6,800 2,200 1,200
CaO	6.92	LiF TX-1 EDDT	113.01 53.35 44.84	" "	" " "	56,000 28,000 16,600	10,400 4,800 2,700
${ m TiO_2}$	2.20	LiF	86.07	"	F	11,300	1,750
MnO	0.18	LiF	62.91	"	"		560
Fe ₂ O ₃	6.76	LiF Ge(111) EDDT	57.45 34.47 25.39	SC "	" " "	5,400 580 1,600	7,800 900 800

PC: proportional counter SC: scintillation counter C: coarse F: fine


Scan Speed 2°/min

K ₂ O %	Ca0 %	Ti02 %	MnO %	Fe ₂ O ₃ %
4.51	6.92	2.20	0.18	6.76

X線強度チャート

地質調査所月報 (第27巻 第9号)

第 12 図 クロム, ロジウム管球と TX-1, EDDT の比較チャート

第3表 試料作製法の違いによる各成分のX	X線瑜康
----------------------	------

単位 cps.

PC 管マ イラー膜 厚さ (μm)	成分試料	Na₂O	MgO	Al ₂ O ₃	SiO ₂	$\mathrm{P_2O_5}$	$ m K_2O$	CaO	${ m TiO_2}$	MnO	Fe ₂ O ₃
4	ガラス円板	31	71	471	11,983	106	2,207	12,078	766	389	11,184
1	(1+10)	65	120	781	16,683	203	2,312	13,121	921	539	11,676
4	パノラック 混 合	47	188		50,408	245	6,773	28,880	1,715	582	22,227
1	(1+1)	132	403		70,867	363	7,245	32,189	2,088	860	23,132
4	無水4ほう酸リチウム混合	35	137		37,629	194	6,662	30,887	1,819	632	24,190
1	(1+1)	88	273	_	52,780	291	7,117	34,291	2,207	932	25,316

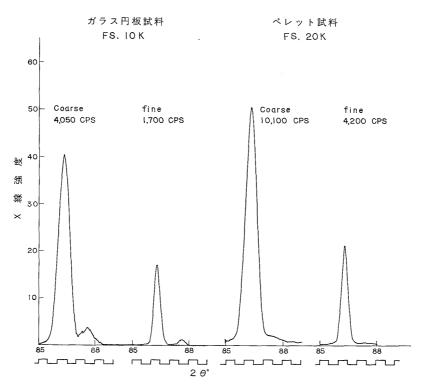
成分	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	K ₂ O	CaO	${ m TiO_2}$	MnO	Fe ₂ O ₃
パノラック /ガラス 混 合/円 板	2.03	3.36	_	4.25	1.79	3.13	2.45	2.27	1.60	1.98
無水4ほう酸 / ガラスリチウム混合/円 板	1.35	2.28		3.16	1.43	3.08	2.61	2.40	1.73	2.17

を比較すると、ペレット試料法が各成分とも高く、また、ペレット試料での比較をすると、 K_2O を境に軽元素側の成分にはパノラックと混合した試料が高く、重元素側の成分には、無水4ほう酸リチウムと混合した試料が高いことが認められる。

マイラー膜の厚さの相違によるX線強度は、 $1 \mu m$ の場合は $4 \mu m$ に比較して重元素側の成分はほぼ 1.0-1.4 倍,軽元素側の成分は1.4-2.8 倍の強度が得られる。とくに Na_2O ,MgO などは著しい。

4. プログラム設定と注意すべき問題点

けい酸塩岩石の 10 成分を,自動プログラムで定量するときに注意すべき元素は,チタン,マンガン,鉄である.はじめにこれらの3元素に関する問題点を検討したのちプログラム設定の結果を述べる.


4.1 チ タ ン

岩石中の TiO_2 含有率は,一般に 2.00% 以下の場合 が多く,チタンのみの定量には試料ホールダーは鉄また はアルミニウム製を用いればよいが,けい酸塩岩石の分析の場合のように Al_2O_3 , Fe_2O_3 ともに主要成分で定量す

ることが多いために、銅製のホールダーを用いなければならない。この場合、ガラス円板試料で試料ホールダーは銅製のものを用い、LiF でチタンを定量すると Ti K α 、86.07° (2 θ) 付近に Cu K β 、2 次線、87.44° (2 θ) が存在し、スリットを Coarse、Fine のいずれにしても完全に分離できないことがわかる(第13 図)。しかしペレット試料で試料ホールダーは銅製のものを用いてもスリット Coarse では Cu K β 、2 次線はごくわずかに認められる程度で、Fine では認められない(第 13 図)。これは試料ホールダーの内径に関係がある。ガラス円板試料を保持する試料ホールダーの内径が小さいので、一次 X線が試料ホールダーにも照射され、銅のけい光 X線が出ているためである。そのため、バックグランドをできるだけ低くすることと、Cu K β との分離をよくするために、スリットは Fine を用いなければならない。

4.2 マンガン

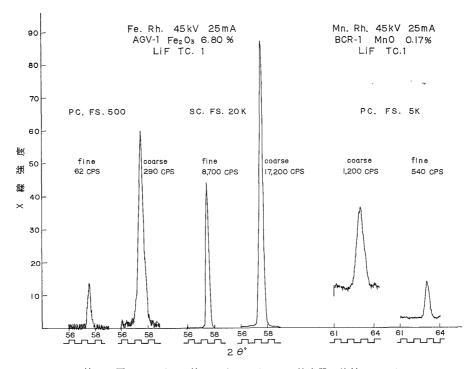
MnO は第 14 図に示したように、Coarse でバックグランドが大きく、Fine では小さく比較的安定している。 Coarse を使用した際のX線強度値は、約 1,200 cps に対しバックグランド値は約 600 cps、また Fine の場合は、

第 13 図 チタンにおけるスリットの比較チャート

X線強度値約 530 cps に対しバックグランド値は約 150 cps となる。 これらの結果より S/N 比を求めると, Coarse は 2.00,Fine は 3.53 で Fine の方が S/N 比が よいことが知られる。岩石中の MnO 含有率は一般に 0.20% 以下程度であること, また分解能, S/N 比など を考え合わせると, Fine を取り入れた方が測定条件としてよい結果が得られたので, プログラムには Fine を用いた.

4.3 鉄

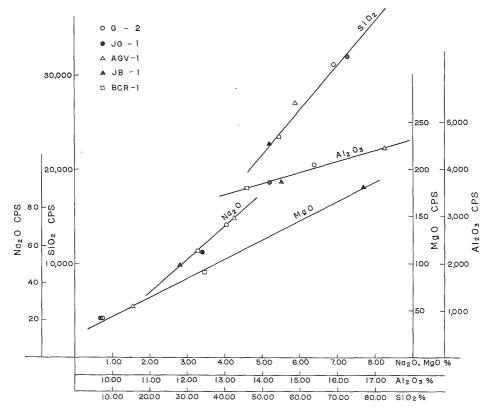
 Fe_2O_3 の測定条件は,第 2 表および第 14 図に示すように,検出器は SC,スリットは Fine がよい. すなわち検出器は PC より SC の方がけい光 X 線強度が高いこととノイズレベルが小さいことである(第 14 図). またスリットを Fine にしても,岩石中の Fe_2O_3 の含有率が高いので,充分なX線強度が得られるとともに,分解能と S/N 比がよくなる等の理由による.

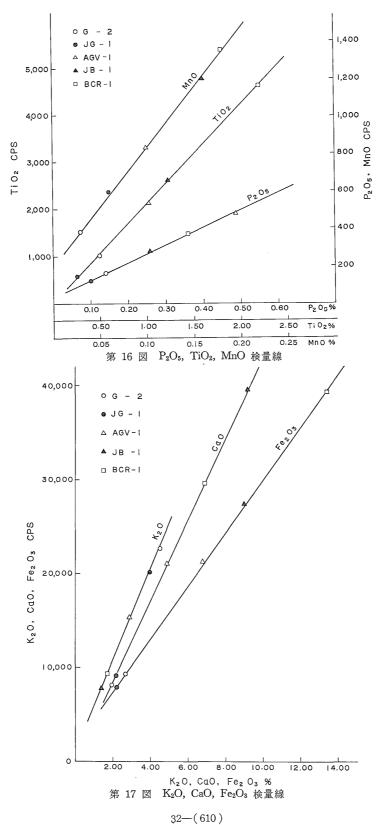

4.4 設定プログラム

以上の検討結果からけい酸塩岩石中の 10 成分の測定条件は第 4表に示した通りに設定した。 これらの測定条件を自動測定プログラムに組み入れて定量できるようになった。 しかし Na_2O , MgO, P_2O_5 については 3.5, 3.6

で述べたように、試料ごとにバックグランドが変動するので、ピークおよびバックグランドを測定する、2 点法または3 点法を用いて定量しなければならない。3 点法を用いることになれば、X 線強度を全カウントからバックグランドを差引いて求めることになる。したがって、軽元素でしかも低濃度の場合には、より高い S/N 比をとることが重要であり、ガラス円板試料よりはペレット試料を用いることが望ましい。

5. 検 量 線


けい酸塩岩石の主成分の定量法は、岩石標準試料のそれぞれ岩質、含存量の異なった試料 (G-2, JG-1, AGV-1, JB-1, BCR-1) を用い、前記の試料調製法に従って作製し、最適条件の自動プログラムで測定を行った。その結果は第 15, 16, 17 図に示すように、各成分ともほぼ直線性を示し定量することができる。しかし Na_2O , MgO の少含有量については、岩質によってバックグランドが異なることから、2 点法あるいは 3 点法を用いる必要がある。また、軽元素側の成分の Na_2O , MgO, Al_2O_3 , SiO_2 については、図に示すようにややバラツキがみられるので、より正確な値を求める場合は大森(1976)の検


第 14 図 マンガン,鉄におけるスリット,検出器の比較チャート

第4表 設定プログラム	ム個	
-------------	----	--

₽ ∧	分析	ゴニオメーター	検出器	-7 11 1	ゲイン	波高	測定時間	
成 分	分光結晶	2 θ°	快口吞	スリット	ゲイン	上限	下 限	(秒)
Na ₂ O	RAP	54.25	PC	С	1.00	575	130	100
MgO	ADP	136.47	"	"	0.60	800	250	100
$\mathrm{Al_2O_3}$	EDDT	142.40	"	"	0.36	850	250	100
SiO_2	TX-1	144.55	"	F	0.36	900	150	40
P_2O_5	Ge(111)	140.76	"	С	0.28	750	150	40
K_2O	LiF	136.56	"	"	0.17	950	250	10
CaO	LiF	113.01	"	,,	0.17	850	270	10
${ m TiO_2}$	LiF	86.07	"	F	0.22	975	450	20
MnO	LiF	62.91	"	"	0.17	800	375	20
$\mathrm{Fe_2O_3}$	LiF	57.45	SC	"	1.00	950	250	10

第 15 図 Na₂O, MgO, Al₂O₈, SiO₂ 検量線

量線法を利用することが望ましい.

6. ま と め

種々検討の結果,けい酸塩岩石の主成分である SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_8 ,MnO,MgO,CaO, Na_2O , K_2O および P_2O_5 について,けい光X線による分析方法のプログラムを設定した.

すなわち、X線管球はRh管球とし、成分によって管球を交換することは行わない.

各成分ごとに、分光結晶、測定角度 $(2\theta^\circ)$ 、検出器、スリット、ゲイン、波高分析値、測定秒数を検討し、最適条件をプログラムユニットに組み込み、ボタン1つの操作で、測定を可能とした。

主としてペレット試料について比較検討を行ったが, ガラス円板試料にも適用できるものである.

自動分析方法で求める成分,また手動分析方法でバックグランドを測定し求める成分とも,精度の向上に重点をおき 5-10% 程度の誤差範囲内で測定ができる。また極力,省力化につとめたため,他分野の研究者でも比較的簡単に測定ができ,しかも湿式分析法よりも迅速であって,個人誤差もほとんどないことが特長である。

文 献

服部 仁(1971) 螢光X線分析法による岩石中の珪 酸塩定量用のガラス円板試料調製法. 地質 調月, vol. 22, p. 103-116.

- ----・柴田 賢(1969) 螢光X線分析法による 岩石中の Rb および Sr の定量, 地質調 月, vol. 20, p. 51-76.
- 五十嵐克己・村田守義 (1971) X線分析 1, 2, 3. 東芝レビュー, vol. 26, p. 1-22.
- 村田守義・鶴岡瑞夫・田之上 司 (1975) X線分析 用 InSb 分光結晶. X 線分析の進歩, vol. 7, p. 147-150.
- NORRISH, K. and HUTTON, J. T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. *Geochim. Cosmochim. Acta*, vol. 33, p. 431-453.
- 大森貞子(1976) 岩石および鉱物中の主成分のけい 光X線分析法――第2報 ガラス円板を使 用した検量線法による定量分析――. 地質 調月, vol. 27, p. 425-442.
- 大森江い(1976) 岩石および鉱物中の主成分のけい光X線分析法――第1報 ガラス円板作成について――。地質調月, vol. 27, p. 195-211.
- 内川 浩・猪股吉三・井上 亨 (1962) 不均一系粉 末試料の螢光X線分析法の検討.分析化学, vol. 11, p. 558-566.

(受付: 1976年3月2日; 受理: 1976年3月29日)