5万分の1地質図幅説明書

瀬 棚

(札幌 - 第 57 号)

工業技術院地質調査所

通商産業技官	佐	Л		昭
同	植	田	芳	郎

北海道開発庁 昭和44年

位置図

()は1:500,000 図幅名

目

次

地 形	1
地 質	4
. 1 概 説	4
. 2 先 第 三 系	5
. 3 新 第 三 系	7
.3.1 太 櫓 層	7
. 3 . 2 馬 場 川 層	10
.3.3 北桧山層群	16
. 3 . 3 . 1 小川峠層	16
. 3 . 3 . 2 真 駒 内 層	17
.3.4 瀬 棚 層	21
. 4 第 四 系	25
. 5 地 質 構 造	31
. 5 . 1 褶 曲 構 造	31
. 5 . 2 断 層 構 造	32
. 6 地史学的考察	32
応 用 地 質	34
. 1 石 炭	34
.2 マンガン	34
.3 珪 藻 土	35
. 4 石 材	36
. 5 温泉および地下水	36
文 献	40
Abstract	1

1:50,000地質図幅 減 棚 (札幌 - 第57号)

工業技術院地質調査所

通商産業技官 佐川 昭同 植田芳郎

この地質図幅は北海道開発庁の委託によって作成された。野外調査は1963 - 1965年に 実施され,利別川南部および目名川流域は主に佐川が,それ以外の地域は主に植田がそれ ぞれ担当した。室内研究は引き続き地質調査所および同北海道支所で行なわれた。

野外調査にあたって瀬棚町・北桧山町および今金町役場から種々便宜をうけた。特に北 桧山町役場産業課長上野千春氏からは貴重な資料の提供をうけた。

貝化石の鑑定は北海道大学理学部地質学鉱物学教室赤松守雄氏を煩らわした。また,有 孔虫化石の鑑定は地質調査所北海道支所石田正夫技官に,岩石の検鏡は地質調査所沢村孝 之助技官によって行なわれた。

地 形

この図幅は北海道南部渡島半島のほぼ中央部の西海岸に位置し,日本海に面している。 行政区分上は桧山支庁管内瀬棚郡瀬棚町・北桧山町および今金町の一部に含まれる。

この地域内の地形はほとんど段丘地形で代表されるが,高度と形状によって山地・台地 および低地の3つに分けられる。

山地は図幅地域内北東縁部および南西縁部にわずかに存する。北東縁部山地は,北接狩 場山および大平山図幅地域にあるメップ岳(1,147.2m)およびカスベ岳(1,049.2m)が 形成する山地の南側山麓の尖端部にあたり,第三紀の火山岩類および白亜紀の花崗閃緑岩 からなっており,最高標高約400mである。南西縁部を構成する山地は,久遠図幅地域内 の毛無山(816m)の北斜面にあたる。この山は花崗閃緑岩からなるが,本地域では先第 三紀の堆積岩類とともに標高429.5mの山地を形成している。

台地は利別川および太櫓川の流域を除く本図幅地域のほとんどがこれに含まれる。地形 的に4段丘がみとめられる。

図版1 上鈴野原高位段丘(t₁)面上

最高位段丘(200m+)は,図幅北部上鈴野原および小倉山付近などに分布し,図幅南部 ^{きんばら} では金原南方にわずかに分布している。

高位段丘(30~200m)は,最も分布の広い段丘で図幅地域全域に広く分布している。 ^{のあい} 標式的には三浦山形・雲内および野合などがあげられる。

中位段丘(20~80m)は,神丘および大谷地付近に標式的な分布がある。

低位段丘(15~20m)は,利別川支流目名川および真駒内川に,また太櫓川上流左股付 近にわずかに分布している。

低地は利別川ぞいに東西方向に細長く沖積平野を作るほか,太櫓川中流には盆状の低地 が発達する。

海岸低地には,瀬棚港から利別川口と太櫓川口とにかけて3列の砂丘がみとめられる。 海側から陸側に向かって第3砂丘(s₃)・第2砂丘(s₂)および第1砂丘(s₁)とする。 第3および第2砂丘は現海岸線にほぼ平行に配列しているが,第1砂丘は著しく陸側に湾 入している。この海岸低地を除く瀬棚北方および太櫓南方の海岸は40~100mの急崖をつ くって海岸にせまっている。

河川は図幅地域中央を西流する利別川を中心に,北側に馬場川が南側に太櫓川があって いずれも日本海にそそいでいる。

利別川は両岸にほぼ直角に流入する支流をもち,右岸下流から真駒内川および目名川が, 左岸側にパンケオイチャヌンペ川がある。

太櫓川は若松までほぼ南北方向に流れ,若松を過ぎて下流では東西方向の流れとなる。 太櫓川の左岸からの支流小川はほぼ本流に平行して流れている。

利別川および太櫓川はともに蛇行が著しい。

交通は瀬棚から函館本線国縫に至る国鉄瀬棚線が, 図幅地域のほぼ中央を東西に走って

いる。

道路は図幅内をほぼ南北に貫く国道229号線があり,これと直交して先の国鉄瀬棚線に 並走する道道がある。国道229号線は図幅地域北部では海岸線にそって南下し,瀬棚から 利別川沿いに東瀬棚に至り,ここから南下して若松をへて図幅南端のほぼ中央,左股から 宮野をへて江差に通じている。このほか,各河川沿いに林道が,台地上には農道がもうけ られ,密度の高い道路網を形成している。

地 質

.1 概 説

この図幅地域を含めて北海道南西部地域は,地質学上,東北地方裏日本側と同様にいわ ゆる"グリーンタフ地域"に属しており,これらの地域は古期岩類を基盤として,新第三 系の火山砕屑岩に富む地層とこれに引き続く海成の地層を厚く堆積するという共通の地史 をもっている。

この図幅地域を構成する地質系統は,先第三系とこれを覆う新第三系および第四系から なる。その層序関係および岩質の概略を第2図に示した。

先第三系は地域の北東隅および南西隅に分布する。石炭紀~ジュラ紀といわれる砂岩・ 粘板岩およびチャートからなる地層と,これに迸入してホルンフェルス化を与えた花崗閃 緑岩およびこれらを貫く脈岩からなっている。

新第三系は上記2地域の間をうめて広く分布し,北海道南西部地域標準層序のほとんど を露出していると思われるが,岩相の変化が著しく詳細な対比が困難である。先第三系と は不整合関係で接し,地域西側には主として下位の地層が分布し,東側に向かって順次上位 の地層が累重し,ゆるやかな褶曲構造を形成している。下から太櫓層・馬場川層・小川峠 層・真駒内層および瀬棚層に分けられる。

馬場川層・小川峠層および瀬棚層はそれぞれ下位の地層と不整合関係にある。新第三系 各層は瀬棚層を除いていずれも火山砕屑岩を主とし,溶岩・岩脈および堆積岩を伴ってい る。火山砕屑岩と堆積岩との構成比は,一般に下の地層ほど高く,また地域の北部ほど高 い。太櫓層はその最上部に淡水棲珪藻を多く含むことなどから陸成の地層と考えられる が,馬場川層から上位の地層は海成の堆積物からなっている。

瀬棚層は,本図幅地域が標式地となっており,地域中央部に前記の地層群を不整合に 覆って分布し,海棲貝化石を産する。

第四系は大谷地層と4段の段丘堆積層および沖積層に分けられる。

大谷地層は利別川河口北部の大谷地付近と利別川中流愛知東部の小区域とに分布する。

段丘は河岸段丘,海岸段丘ともに発達が良く,上位から2段目の高位段丘堆積層は特に 広く分布している。

沖積層は利別川・太櫓川およびその支流,馬場川下流域などに発達する氾濫原堆積物と 馬場川-太櫓川河口の海岸に発達する海浜堆積物があり,この海岸には3列の砂丘がみと められる。

日 日 1	寺 七	봐	也斥	B	名	層 厚 (m)	柱	状	\boxtimes	岩	質	化	石	その	の他	火成 活動	
衒	現世	砂丘	\leq	神	積層	<u>`_</u>		10000	00000	砂 砂・礫およし	*粘土(泥炭)		·				
分	更	低化	立段丘	堆杠	資層	10± 20+				礫および砂 礫および砂							
		41	立段止	堆杠	<u> 貢増</u>					砂・礫 泥炭および粘土							
凹	新	高	位段日	亡堆	積層	80				礫・砂						05	
1	-##-	最高	高位段	丘堆	ŧ積層	30		میں	● ● ● ▲ ▲ ▲ ▲ ● ● ● ● ● ● ● ● ● ● ● ● ●			安山					
자니	- ? -	大	谷	地		$30\pm$	عتعق	<u>~?</u>	ععمق	粘土・砂および礫(泥炭)	.	「不整合	? 1			नीव	
	鮩									一砂岩シルト着池質砂石工。 軽石礫	1		1477	æ		1	
	新	涑	頁 材	抈	層	130+	<u> </u>	<u> </u>		含礫粗粒砂岩				215 -			
÷r	411-						0000		- — — ,,,,,,	花賞砂石 砂岩"斜層理"							
新	<u> </u>							-	٢	砂岩・礫岩		不整合	•		1		
		北					<u> </u>	$\langle \cdot, \cdot \rangle$		一砂岩 K。黑雲母軽石凝灰岩						1	
1		榆	-स- ।	£⊱ r	비교	055			==	砂岩・シルト岩・火山岩質	砂岩・凝灰質粘土岩						
		111	具	──── I	门間	255+	$\sim \sim \sim$	\rightarrow	:全全省	K ₂ 白色凝灰岩および角閃石 	石質凝灰岩 (小学)新尿度は+					安武	
	4	Ш					\sim	$\sim \sim$		K ₁ 黒雲母軽石凝灰岩	(1973) V& V\J (411-1.4)	N				岩	
		層	小丁		~~	28	<u>, , , , , , , , , , , , , , , , , , , </u>			砂岩および珪藻質シルト	11 17 12 12 1	スラン	nocatatu ドング	m sp.			
第		Ή¥	旧し	1 <u>-</u> 1	邹 阍	~60	6000	\	<u>^ </u>	ペニア、確認者・握相違い 避灰角礫岩・凝灰質砂岩	・凝灰質シルト岩	~//			sp		
ļ		伂十	層上	Tì	部層	⁹ 28+		x		軽石凝灰岩・凝灰角礫岩		マン 不勝合	イガン ☆		ша		
							\tilde{x}		444	普通輝石橄欖石 玄武岩	凝灰角礫岩	Des	mostylu	s sp.	ki va		
		HF:	48		5	7 0	<u>ک</u>			凝灰質砂岩・凝灰質泥岩		Chi An	arcarodo adara	n sp. /Ŧ-tu	eW		
		馬	场	л	一个目	~ 200 +				角閃石含有紫蘇輝石普通	輝石安山岩			10.77			
	新								$\pm \pm \pm$	砂岩		マン	ガン			1	
<u> </u>							عميتم	فغبغبغ	ກັບວິດ			不整合			1		
				内音	心層	40 +			-	- 鍵穴質砂石(石灰) - 注藻質シルト岩		Mel	osira s	ip.			
										火山角礫岩 緑色凝灰岩							
								ΔΔΔ° ΔΔ°	ູ້	火山岩質礫	君						
			太	櫓	層		XX:	X.";									
		槢	<u> </u>		士 17	400±				- 安山岩質集塊岩・滞灰角症	<u>新日</u>						
紀	世		<u>+</u>	•	部				= + +	要查羅石並通輝石房山岸							
									° ۵ ۵ ۵ ۵	赤麻叶石自鱼叶石及印石							
	1	層															
			良珩	石	郑層	30 +-				硬質シルト岩・珪藻質シ/ アルコース砂岩・凝灰質研	レト岩 9岩(石炭)					1	
先	. 1					[]/]	///+++	ホルンフェルス									
第	第		堆積岩類			堆積岩類 /					粘板岩・チャート・硬 輝緑緑灰岩	砂岩					
=					15	1//	/	»ተነትተለንደር//እሳ 1									
紀			/#:	品印	四县山		$\downarrow_{\mp,\mp}$		+ + + + + + + + + + + + + + + + + + +	在期 77.用作过步出现起来。							
小山			10	山田山	小你石		++++++++++++++++++++++++++++++++++++	+ <u>+</u> ++	⊦ <u>+</u> + <u>+</u> +	户中内4日点款时4E1周内#R7行							

第2図地質総括図

.2 先 第 三 系

この地域に分布する先第三系は,堆積岩類とこれに迸入した花崗閃緑岩およびこれらを 貫く岩脈からなり,新第三系の基盤岩類を構成している。

堆積岩類

^{5 & 5 い し うどまり} 図幅地域南西隅の良瑠石 - 鵜泊間の海岸と良瑠石川中流左岸とに囲まれる三角形の地域 に分布する。岩質はチャート・粘板岩・砂岩および輝緑凝灰岩などからなり,後述する花 崗閃緑岩の迸入によって変質をうけホルンフェルスになっている。層序の詳細は分布が狭 いために不明である。

粘板岩は黒色 - 灰緑色を呈しよく成層している。砂岩は灰色 - 灰褐色を呈し著しく堅硬 である。チャートは灰白色を呈し,先の粘板岩と互層する場合と均質塊状を呈する場合と がある。

ホルンフェルスは黒雲母ホルンフェルス を主体とするが,そのほか構成鉱物として 菫青石・透輝石および電気石の認められる 部分もある。

鵜泊海岸立岩対岸の岬および良瑠石川中 流には,花崗閃緑岩に接して白黒2色のき れいな縞状を示し,一見して片麻岩状のホ ルンフェルスが分布している。淡灰白色の 部分は粒状を呈し,斜長石と石英とからな り,砂質岩からの変質と考えられる。一方, 黒色の部分は黒雲母・角閃石からなり,肉 眼でも柘榴石が観察され,泥質岩からの変 質と考えられる(図版2)。

花崗閃緑岩

図幅地域北東部の目名川中流左岸地域 図版2 鵜泊海岸の縞状ホルンフェルス ^{みだれ} と,南西部の水垂岬付近に露出するほか,古櫓多南部および小川支流に小範囲に露出 する。

岩質は角閃石黒雲母花崗閃緑岩で,肉眼では粗粒優白質で黒雲母に富み,大型の角閃石

を散点しその長さ1cmを超えるものが認められ,そのほか石英および長石類が観察される。

顕微鏡下における斜長石・角閃石および黒雲母は通常長径が3mm以下で自形~半自形 を示し、その間を少量の石英および斜長石が埋めている。石英はときに長径が3mmに達 することがある。黒雲母および角閃石は緑泥石化することが多く、斜長石もその核部が汚濁 していることが多い。これらの岩石学的記載は山口⁵⁶⁾(1932)、浜野⁷⁾(1943)にくわしく述 べてある。

アプライト岩脈

上記,堆積岩類および花崗閃緑岩を貫いてアプライト岩脈がある。これは顕微鏡下では 粒状を呈しており,斜長石・石英・正長石あるいはペルト石からなり,角閃石・黒雲母を 伴い,わずかに燐灰石・榍石・ジルコンを含有する。また,まれに白雲母・黄鉄鉱も散在 している。

図版3 鵜泊立岩のアプライト脈

基盤岩類相互の地質的関係は, 良瑠石川および鵜泊の海岸で花崗閃緑岩が堆積岩類に迸入し, 堆積岩類をホルンフェルス化しているほか, 良瑠石川上流では断層関係で接しているところもある。しかし, 大局的には第3図のようにルーフペンダント状の産状と考えられる。

先第三系堆積岩類の地質時代については,この地域ではまだ古生物学上の証拠はえられ ていない。しかし,北海道南西部に分布する新第三系の基盤岩類から産出する化石は,吉 田・山口⁵⁷⁾(1967)によって大千軒岳付近から中部石炭紀を示すものと,橋本・猪郷¹⁰⁾ (1962)によって島牧村からジュラ紀以降を示すものとが報告されている。なお,花崗閃

緑岩については河野・植田 ²³⁾(1966)によってK - Ar 年代から白亜紀の生成とい われているので,ここでは 中部石炭紀以降ジュラ紀以 前の堆積岩としておく。

.3 新第三系

北海道南西部地域におけ る標準層序に対比される各 地層が分布しているが,模 式地との岩相の差異が著し

さつかいし

い。なかでも八雲層に特徴的な硬質頁岩相の欠除はそのよい例としてあげられる。

本図幅地域の新第三系は,岩質および地質関係などによって,下から太櫓層,馬場川層, ^{こがわ} 北桧山層群(小川峠層・真駒内層)および瀬棚層に分けられ,それらは互に不整合関係を もって累重している。

.3.1 太 櫓 層

太櫓層は本地城における新第三系の基底層にあたる。

その分布は瀬棚北方の海岸と太櫓海岸,太櫓川下流域および良瑠石川流域に広く, 栄 石 南西方の小沢にわずかに露出している。

下位の先第三系とは不整合関係にあり,基盤を構成する各岩類を覆って分布している。 岩質は凝灰岩・凝灰角礫岩・集塊岩・火山円礫岩および安山岩溶岩からなり,火山砕屑 岩に富むことが特徴となっている。しかし,本図幅地域内では上・下限の2層準に淡水棲 珪藻を含むシルト岩や褐炭層を挾有する特徴から,下位から良瑠石部層,太櫓層主部およ び嗣内部層に3分した。

良瑠石部層(Rr)

良瑠石川上流と小川支流の小範囲および古櫓多海岸に本部層が分布する。岩質は灰白色 砂岩・凝灰質砂岩および硬質泥岩からなり,褐炭層を挾み,層厚は30m以下である。しか し,露出地域によって岩相にいくぶん差異が認められる。

良瑠石川上流における本部層は,下限が断層によって花崗閃緑岩と接しているため不明

であるが,観察される範囲内では灰白色砂岩・凝灰質砂岩および硬質泥岩からなる。ここ では砂岩中に炭化木が含まれており,上部は太櫓層主部の凝灰角礫岩に移化している。

小川支流の本部層は花崗閃緑岩上に凝灰角礫岩層をへて凝灰質砂岩と硬質泥岩との互層 からなり,その中に黒褐色褐炭のレンズを3~4層挾み,漸次太櫓層主部の凝灰角礫岩に 移化している。

上述の2地点のほか,古櫓多海岸の太櫓層基底付近に層厚約15m,礫岩と凝灰質粗粒-細粒砂岩からなる地層がある。上部は太櫓層主部の凝灰角礫岩に移化している。

前記3地点のうち, 良瑠石川上流における本部層の灰白色砂岩から, 根本・佐川⁴³(1965), 佐川・他4名⁴⁷(1969)によって燐灰ウラン石の産出が, 小川支流の褐炭中からも放射能異 常が報告されている。

以上のように,本部層は露出が限られ太櫓層主部と上下に漸移の関係があることから, 独立した地層名を与えるべきではないが,観察される範囲では太櫓層の比較的基底に近い 層準に分布することから一応分層した。

本部層は,太櫓層主部の堆積初期に基盤の地形に支配された局所的な堆積物であろう。 太櫓層主部(Ft)

太櫓海岸に模式的に分布するほか太櫓川下流,小川流域および瀬棚海岸に好露出がある。

本層は安山岩質凝灰岩・火山礫凝灰岩・凝灰角礫岩・火山角礫岩・凝灰集塊岩および火 山円礫岩からなり,安山岩溶岩および岩脈を伴っており,その厚さは400m以上と推定さ

図版4 鷹ノ巣岬付近の凝灰角礫岩(Ft)

れる。

火山岩塊および火山礫の礫種は,紫蘇輝石普通輝石安山岩が多く,まれに角閃石含有紫 蘇輝石普通輝石安山岩・変朽安山岩および橄欖石玄武岩を混在する。基質は安山岩質凝灰 岩からなり,赤褐色または淡灰色を呈する。また,ときに淡緑色の鮮かな緑色凝灰岩を示 す場合もある。

太櫓海岸における本層は,基盤の花崗閃緑岩の上に不整合関係で接している。その層序 は,基底礫岩をもってはじまり,その上に淡黄灰色の凝灰岩・凝灰角礫岩の厚層が累重 し,この中に安山岩溶岩および同質凝灰集塊岩を挾んでいる(図版4)。

太櫓川中流および小川流域の本層は安山岩質火山円礫岩を主とし,凝灰角礫岩および凝 灰岩からなり,安山岩溶岩および岩脈を伴っている。

太櫓海岸に分布する凝灰角礫岩と太櫓川および小川流域に分布する火山円礫岩との関係 は,その円磨度が漸移すること,いずれも良瑠石部層の上位に累重することから,同時異 相の関係にあるものと思われる。

安 山 岩(Fan)

太櫓層中の安山岩は溶岩,岩床および岩脈状の産状を示す。溶岩とみられる主なものは 太櫓海岸から良瑠石川にかけて分布する2層とベニカモイ西方の1層とであって,3~50 cmの板状節理が発達する。いずれも紫蘇輝石普通輝石安山岩で,石基はガラスと斜長石 の微晶とからなるハイアロピリチック組織を示すものから,斜長石・単斜輝石からなるサ プオフィチック組織を示すものまでが認められる。同一岩層でもところにより輝石の量の

図版5 古櫓多付近の安山岩溶岩(Fan)

多少によって岩質の変化が認められる。

岩脈状を示すものに山越南西方に散点的に分布する安山岩がある。いずれも紫蘇輝石普 通輝石安山岩である。岩脈状の産状を示す安山岩については、太櫓層中の角礫種などから 太櫓層堆積中または直後の火山活動のものと考えられるので一括した。

嗣内部層(Tk)

ばいかつ

つくない 本層は瀬棚北方海岸の嗣内・中歌・梅花都および馬場川川口付近に分布する。太櫓層主

部との関係は、主部の帯緑 色凝灰角礫岩から漸移し ている。岩質は白色 - 淡褐 灰色珪藻質シルト岩を主と し,上部に炭層を挾む砂岩 が累重する (第4図)。上限 は次に述べる馬場川層の基 底礫岩によって削剝されて いるが,認められる範囲内 では層厚最大40mと推算さ れる。

第4図 嗣内部層最上部柱状図(虻羅の沢)

granulata (EHRENBERG) ほかの淡水棲珪藻種を多産する。

太櫓層は前記のように安山岩質火山複合岩を主体とする地層であるが、堆積岩相の部分 から淡水棲珪藻や植物化石を産する非海成の地層で,棚井54)(1963)によれば,本層から台 島型化石植物群の北方型を示す次の植物化石が報告されていて(第1表),後述する馬場川 層と対蹠的な堆積相を示している。

.3.2 馬場川層(Bg)

本層は三谷・他2名³¹⁾(1961)の馬場川層から,上部の浮石質凝灰岩層を除いたものに相 当する。

下位層との関係は、地域西部では太櫓層を、地域北東部では基盤の花崗閃緑岩を覆蔽し ている。なお、局部的には太櫓層上部の嗣内部層の各層準(第5図参照)に、また嗣内部層 を欠いて太櫓層主部に直接する関係が観察される。本層基底の不整合は、地層の削剝や堆

第5図 馬場川層柱状対比図(瀬棚北方海岸)

図版6 嗣内北方トンネル入口の珪藻質シルト岩(Tk)

第1表 嗣内部層産植物化石

- Abies n-suzuki TANAI
 Picea magna MACGINITIE
 Picea miocenica TANAI
- Picea ugoana Huzioka
- Glyptostrobus europaeus (BRONGNIART) HEER
- Metasequoia oscidentalis (Newberry) Chaney Thuja nipponica TANAI and ONOE Populus reniformis TANAI
- △ Comptonia naumanni (NATHORST) HUZIOKA Carya miocathayensis Hu and CHANEY
- Pterocarya ezoana TANAI Alnus protomaximowiczii TANAI Betula sublutea TANAI Carpinus miofangiana Hu and CHANEY Carpinus subyedoensis Kon'no Carpinus subcordata NATHORST
- Castanea miomollissima Hu and CHANEY
- Fagus antipofi HEER
 Ulmus shiragica HUZIOKA
 Ulmus longifolia UNGER
 Cercidiphyllum crenatum (UNGER) BROWN
- △ Liquidambar miosinica Hu and CHANEY Robinia nipponica TANAI Ailanthus yezoense OISHI and HUZIOKA
- Acer ezoanum OISHI and HUZIOKA Tilia protojaponica ENDO

● 多産 △ 台島型特徴種

積環境の淡水から海水への変化など地質学的な意義は大きい。

本層の層序は,模式的露出地の瀬棚北方嗣内付近では,下位嗣内部層の珪藻質シルト岩の不規則面上に基底礫岩をもって重なる(図版7)。基底礫岩の礫種は,紫蘇輝石普通輝石安山岩を主とし,まれに花崗閃緑岩を混える。最大長径120cm,人頭大の礫が多い。礫岩上位には炭質物および海棲貝化石を含む細粒砂岩があり,さらに級化成層を示す細礫岩-微細粒砂岩が重なっている(図版8)。

図版7 嗣内沢における馬場川層基底礫岩

図版8 細礫岩 微細粒砂岩の級化成層(Bg)(嗣内沢)

この微細粒砂岩の上位は、暗黄褐色を呈する玄武岩質凝灰角礫岩・火山円礫岩が重なる。

本層基底部付近の砂岩からAnadara sp., Cyclina sinensis (GMELIN), Limopsis sp., Neptunea sp., Charcarodon sp.*を,細粒砂岩やシルト岩からMakiyama sp.を産する。

また,トシベツ付近(多分旧初音鉱山,石淵付近)から松本²⁹⁾³⁰(1916)(1918)によっ て*Desmostylus japonicus*の産出が報告されているが,これは馬場川層の玄武岩質凝灰 角礫岩から産出したものと推定される。

地域中西部ベニカモイ北方の本層は,基底礫岩の上に軟弱で雲母片を多量に含む細粒砂 岩からなる。また,地域南部小川峠付近における本層はシルト岩が卓越し,その最上部に 凝灰角礫岩の巨礫を含みスランピングを示す地層が重なっている(図版9)。このように本 層はところにより岩相の変化が著しい。

図版 9 上:軽石凝灰岩層(Kgl-Kgu),下:異常堆積層(Bg) 小川峠付近

従来,本層は太櫓層とともに訓縫層に対比されていたが,馬場川層が海成層を示すこと, および太櫓層との間に大きな不整合のあることなどから,三谷ら³¹⁾によって訓縫層から分 離された。

筆者らは,訓縫層に対比されていた太櫓層を,台島型植物化石群および淡水楼珪藻の産 出などから,秦¹²(1967)の熊石地域における関内層に対比し,新しい定義の馬場川層を訓 縫層に対比した(第2表)。

これらの動物化石は図幅に示したもののほか, 嗣内沢・ベニカモイ北方の小沢などから産する。また, 小川中流の本層礫岩中から象化石を産した。

第2表 対 比 表

魚	石	地	域	1	Ţ	袁 :	也」	或 	4	ς.	X	幅	太	櫓	地士	或
	秦(1	967)		뒫	言井)	まか	まか(1969)			川•	植田	(1969)	Ξ	谷ほカ	> (196	51)
				第	現世	沖	積	層	第	汝	1 積	層	沖	積	層	第
				四	更新世	 段I	~~~~ 壬堆租	責層	四	B	2. 丘堆	積層	 段	丘礎	影層	紀
				紀		$\overline{ }$	$\left \right $		紀	*	、谷	地層	大	谷地	也層	
					鮮新世	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	棚	層		 , ```	~~~? 頁 棚		瀬		層	新
	長	磯	層	新		~~~~ 長磯	層		新	北	百 町			ш <u>ь</u>	- 5	
	黑	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	層		中	 真	駒内	層		桧山	具 劓	· 13 /8	具	駒ど	」眉	第
新				第		むでなか 貉 住	い 予層	/	第	眉	こ がわ //、川	上部層	-{角(-{•}	樂凝灰 孚石質 岩層	岩凝馬	=
第	· 八	丟	圕		新		, 1	/ 小川 岸層	=	群	峠層	下部層		集塊岩 赤岩海	層場川	
	 訓	~~~~~ 縫 層	₩			~ 訓	縫	層		~~~~ 見		川層		岩層 礫質岩	》 層	紀
₩G.	~~~~		~~~~~	紀	世	太	~~~~ 櫓	~~~~	紀	 7	~~~~~ 櫓	層	 訓	 縫	~~~~	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 Ц	層	-		日安	~~~~ 別	ご質								
先		Ξ	紀	-	<u>.</u>	 先	白耳	~~~~ E 系	5	~~~ も ::	第三	 紀				

安 山 岩(Ban)

馬場川層中に溶岩状に産する安山岩は,主として角閃石含有紫蘇輝石普通輝石安山岩からなり,地域北東部の目名川から域外北方にかけて分布する。数層の溶岩と同質の凝灰集 塊岩からなっている。

このほか,域外北方には斑晶が普通輝石と斜長石とからなる玄武岩質安山岩と同質凝灰 集塊岩が発達する。 玄 武 岩(Bba)

本属中の玄武岩は主として岩床状の産状を示す。主な分布地は瀬棚三本杉岩付近・中歌 - 嗣内間・大櫓川河口高山ノ下付近および石淵などである。このほか,島田⁵¹⁾(1961)によっ て瀬棚試掘井の深度511.3m以深に玄武岩~粗粒玄武岩の分布が報告されているが,これ もこの玄武岩のグループに含まれるものと考えられる。

三本杉岩および高山ノ下付近に発達する玄武岩は塡間組織または間粒状組織を示す橄欖 石玄武岩で,橄欖石の斑晶は変質を受けている。石淵付近に分布する玄武岩は石英の斑晶 を含んでいる。

.3.3 北桧山層群

地域中央部を南北に幅広い帯状に分布し,北部から北東部にかけて大きな向斜構造を示 して分布する(第8図地質構造図参照)。

下位層との関係は不整合で接し,馬場川層を欠いて直接太櫓層に覆蔽する部分も観察される。

岩質は主として凝灰岩・凝灰角礫岩・砂岩およびシルト岩からなる。火砕岩に富む下部 を小川峠層,堆積岩に富む上部を真駒内層に2分した。

.3.3.1 小川峠層

地域南部の小川峠の道路切割を模式地とする。凝灰岩を主とし凝灰質砂岩およびシルト 岩を挾み,ところにより凝灰角礫岩が発達する。模式地における本層下部の凝灰質細粒砂 岩を挾む2層の凝灰岩を小川峠層下部層とした。



図版10 軽石凝灰岩の累層(Kgl-Kgu) 小川峠登口付近

小川峠層下部層(Kgl)

上述の小川峠を模式地とする。

南北方向の向斜構造を示して分布する。その西翼は地域南部の若松向・背斜と,それに 連なる地域北部の馬場川向・背斜によって,ゆるくうねりながら南北に細長く分布する。 向斜東翼は目名川中流に露出する。

下位層との関係は,模式地小川峠付近では馬場川層に累重するが,小川下流および蛯 あぶら 沼付近では馬場川層を全く欠いて太櫓層を直接覆う。また,地域外北方の虹羅海岸付近で は,馬場川層の基底礫岩直上に累重するなど,ところにより下位に接する地層の層準を異 にし,明瞭な不整合関係を示している。

岩質は模式地付近では(第6図北桧山層群柱状対比図,第7図同位置図,柱状図番号 参照),下から白色細粒凝灰岩と淡灰色凝灰質細粒砂岩との互層(2m),凝灰質細粒砂岩 (0.5m),含黒雲母白色軽石火山礫凝灰岩(7m)と累重する。下部層の凝灰岩は上部層の 凝灰岩に比較して,風化面が白色を呈することが特徴的である。

地域北部真駒内川上流の本層は安山岩質凝灰角礫岩および玄武岩質安山岩の枕状溶岩を 挾む。本層にはマンガン鉱床を胚胎している。層厚は9~28m以上と推算される。

小川峠層上部層(Kgu)

下部層と同じく小川峠の道路切割を模式地とする。

分布もほぼ下部層と同じように向斜構造の両翼に分布する。

軽石凝灰岩を主とし凝灰質砂岩およびシルト岩を挾む。凝灰岩の色調は小川峠層下部層 に比較して暗色を呈する。模式地における本層の層厚は51.7m,凝灰岩だけの厚さは37.3 mである。

地域北方真駒内川およびポン目名川流域における本層は安山岩質凝灰角礫岩に移化して いる。シルト岩および細粒砂岩から*Makiyama* sp.を産する。

.3.3.2 真駒内層(Mk)

三谷ほか³¹⁾の真駒内層にほぼ同じ。

真駒内川流域から太櫓川流域にかけて南北に幅広く,パンケオイチャヌンペ川上流および雲内北方の小沢に地窓状に分布する。

下位層との境は,小川峠層上部層の凝灰岩からシルト岩の厚層に変わるところをもって した。

下から二俣凝灰岩層(K₁),雲内凝灰岩層(K₂)および左股凝灰岩層(K₃)のそれぞ

れ特徴のある凝灰岩が発達しており,地域内の鍵層になっている。

K₁の下位は風化面が黄灰色,新鮮面では帯緑灰色のシルト岩を主とし,本層基底部付近 ではスランピング現象が観察される。K₁直下およびK₁とK₂の間は主として細粒~微 細粒砂岩からなり,黒色スコリヤ質砂岩や白色凝灰質シルト岩の薄層を多数挾み,遠望す ると白黒2色の縞状を呈する(図版11)。K₂とK₃の間およびK₃の上位は主として微細 粒砂岩からなり,K₁とK₂の間よりも凝灰質岩を挾む度合が少なく,幅の広い縞状を呈す る。西丹羽付近から北方に分布する本層上部の岩相は細~中粒砂岩からなり,利別川南方 地域よりも粗粒となっている。



図版11 真駒内層中部の縞状互層,濁川流域

本層中・上部に長径2mに達する泥灰質団球が含まれる。

本層は上下を通じ*Makiyama* sp.を産する。とくにK₁の直上には*Makiyama* sp.の 密集帯と"生痕"とが観察される。真駒内川上流およびパンケオイチャヌンペ川上流の本 層細粒砂岩から*Nemocardium* cf. *yokoyamai* TAKEDAの単群集を産する。また,愛知 東方の本層から鯨骨化石を得た。

本層の層厚は250m以上を算する。

二俣凝灰岩層(K₁)

若松から二俣に通ずる旧国道の崖に好露出がある(図版12)ほか,パンケオイチャヌンペ川上流・西丹羽北方および若松隧道北口などで観察される。

下盤は帯緑灰色の細粒砂岩からなり,間に帯黄灰色凝灰質微細粒砂岩を挾む上下2層の 軽石凝灰岩からなる。軽石の径は3cmていど,軽石および火山灰中に黒雲母片を多量に







含む。黒雲母の大きさはふつう1~2mmのものが多い。凝灰岩は上下とも葉理が発達し, 斜層理を呈する部分もある。



図版12 二俣凝灰岩層(K₁), 若松南西方旧国道

層厚は若松付近で下の凝灰岩が7m,中間の砂岩が3m,上の凝灰岩が3mである。 雲内凝灰岩層(K₂)

オンコヤチから雲内段丘面に上る坂道の切割に露出するほか,濁川流域および真駒内川 上流などで良く観察される。

オンコヤチ - 雲内間では下の角閃石安山岩質石質凝灰岩(厚さ20cmで褐鉄鉱に汚染されている)と,上の白色細粒凝灰岩(厚さ55cm)との間および両凝灰岩の上下位はMakiyama



図版13 左股凝灰岩層(K₃)左股二号橋下流

sp.を多く含む微細粒砂岩からなっている。上下の凝灰岩の層間距離は4.65mである。 左股凝灰岩層(K₃)

地域南端の左股二号橋下流左俣川右岸に標式的に発達する(図版13)。金色の光沢を有す る雲母片を多く含む軽石凝灰岩からなる。7~10m下位に白色細粒凝灰岩,または凝灰質 細粒砂岩の薄層を伴う。

標式地付近における厚さは14mを算する。

濁川上流では本層上位に,本層に良く似た岩質の凝灰岩が2層累重している。

.3.4 瀬 棚 層(St)

長尾・佐々³⁶⁾(1933b)の瀬棚統の一部で,橋本・他3名¹¹⁾(1963)が再定義したものに当たる。



第8図 地質構造図

地域の東半部を占めて南北に長く広く分布している。

下位層との関係は,池谷・植松¹⁴⁾(1968)によってところにより整合であるといわれているが,この地域内では不整合関係を示している。すなわち,下位の真駒内層と構造差を示して分布すること(第8図地質構造図参照),および基底礫岩中に真駒内層のシルト岩を礫として含んでいることである。下位層との関係を示す例を図版14・15に示す。



図版14 瀬棚層基底部,丸山北方



図版15 瀬棚層と真駒内層,ポン目名川上流

岩質は未凝固の砂・礫およびやや凝固した泥質砂岩・シルト岩からなり,砂層中に著し い斜層理を示す層準が観察される(第9図瀬棚層柱状対比図参照)(図版16)。その斜層理を

# 第3表1 瀬棚 層 産 出 化 石 表

産 地	<b>S</b> 529.	<b>S</b> 553	<b>S S</b> 57	'9 <b>s</b> 5	580	<b>S</b> 590	<b>S</b> 599	<b>S</b> 602	<b>S</b> 631	<b>S</b> 636	<b>S</b> 665	<b>S</b> 698	<b>S</b> 827	<b>S</b> 829	\$829_E	<b>S</b> 830	<b>S</b> 853	<b>S</b> 856	<b>S</b> 858	S 884	2293	2297	2302
腹 足 類 Puncturella cf. major DALL Haustator (Neohaustator) fortilirata (Sowereb Tachyrhynchus reticulatus (MIGHELS) Trichemething webilie (A A march)	.)	0								0		0				0							
Primovula ? sp.         Tectonatica janthostoma (DESHAYES)         T.       sp.         Boreotophon elegantula DALL		0						0		0		0								0		0	
B. sp. Mitrella sp. Neptunea eulimatus DALL N. eulimata lamellosa Golikau N. cf. lyrata phonicea (DALL)						0						0 0 0										0	
N. sp. Ancistrolepis sp. Retifusus sp. Tlicifusus sp. Liomesus sp. Helicofusus sp.		0					0	0	0	0 0 0		0							]				
Admete sp. Antiplanes contraria (Yokoyama) Rectiplanes sp. Boreoscala sp.										000000000000000000000000000000000000000		0											
掘 足 類 Dentalium sp. Fissidentalium sp. おの足類 Nuculana pernula (Möller)		0								0		0										0	
N.pernula sadoensis (Yокочама)Yoldia thraciaeformis (Storer)Y.cf. jahanni DallY.sp.Anadara sp.	0						0				0		0	0									
Glycymeris nipponicum (YOKOYAMA) G. sp. Limopsis tokaiensis YOKOYAMA Chlamys cf. islandica (Müller) C. cosibensis (YOKOYAMA)						0		0	0	0		0							0	0		0	
C. farreri PRESTON C. sp. Polyneamussium alaskaensis DALL Swiftopecten swifti (BERNARDI) Patinopecten vessoensis (IAX)						0		0		0		0		0					0	0	0	0	
Limatula sp. Monia macrochisma Deshayes M. sp. Ostrea sp. Tridonta borealis (Schmacher)		0				0				0		0										0	
T.alaskaensis DALLAstarte sp.Cyclocardia crassidens (BRODERIP et SOWEREC.ferruginea CLESSINC.sp.	r)	0				0		0		0				0								0	
Clinocardium sp. Fulvia sp. Phacosoma japonica (REEVE) P. sp. Liocyma fluctuosa (Gould)		0									0	0		0			0	0				0	0
Spisula sachalinensis (SCHRENCK) S. sp. Macoma sp. Hiatella sp. Panopea sp. Mya truncata LINNÉ	0		0								0	0	0	0	0	0		0					0
腕 足 類 Terebratulina sp. う に 類 Echinarachnius mirabilis A. Agassiz								0				0											
L. sp. 擬珊瑚類 Allopora sp.	泥 !	 査   細 考	」 記	 質   泥	質	 粗 粒	含 碟		細 粒	細粒	含碟	細粒	細 粒	泥質	泥質	細粒	微細粒	細 粒	     細 粒	合 礫	礫 岩	中 粒	砂質
岩	微細   砂   散	亚 当 砂 お はきよ	当 砂 せ 散	杠   細 岩   砂  点   散	杠 岩 点	砂 岩	<ul> <li>              ඥ1             粒砂岩      </li> <li>             散 点      </li> </ul>	砂 岩	砂 岩 散 点	砂 岩       密 集	砂岩 散点	砂 岩	₩ 砂 岩 ₩ ₩ ▲ ₩ 点	₩ 祉 砂 岩 散 点	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	│砂岩 │散点	砂岩       散点	砂 岩       散 点	砂 岩       散 点	砂 岩	砂 岩	砂 岩       密 集	シルト岩 散 点

## 第3表2 有孔虫化石表

Textularia agglutinans D'ORBIGNY Τ. candaiana D'ORBIGNY T. conica D'ORBIGNY Karreriella baccata japonica ASANO Quinqueloculina agglutinata CUSHMAN Q. vulgaris D'ORBIGNY Pyrgo ezo Asano Robulus interruptus ASANO Planularia sp. Dentalina setanaensis ASANO Lagena acuticosta REUSS L. sulcata spicata CUSHMAN & MCCULLOCH Fissulina catenulata WILLIAMSON lucida Willamson  $F_{\cdot}$  $F_{\cdot}$ orbignyana SEGUENZA Pseudoglandulina laevigata (D'ORBIGNY) (Guttulina pacifica (CUSHMAN & OZAWA)  $G_{\cdot}$ sadoensis (Cushman & Ozawa)  $G_{\cdot}$ yabei Cushman & Ozawa Polymorphina sp. Sigmomorphina hokkaidoens ASANO  $\boldsymbol{S}_{\cdot}$ nagaoi Asano S. ozawai (HADA)  $S_{\cdot}$ setanaensis ASANO Nonion scaphum (FICHTEL & MOLL) ⊙Elphidium crispum (LINNÉ)  $E_{\cdot}$ fabum (FICHTEL & MOLL)  $E_{\cdot}$ jenseni (Cushman) Cribroelphidium yabei (ASANO) Bolivina sp. Uvigerina cf. bifurcata D'ORBIGNY Siphogenerina raphana (PARKER & JONES) Eponides sp. OCassidulina japonica ASANO & NAKAMURA  $C_{\cdot}$ setanaensis Asano & NAKAMURA  $C_{\perp}$ sublimbata ASANO & NAKAMURA С yabei Asano & Nakamura Pullenia salisburyi R.E. & K.C. STEWART Cibicides refulgens (MONTFORT) С lobatulus (WALKER & JACOB) Hanzawaia nipponica ASANO Planulina wuellerstorfi (SCHWAGER) Globigerina spp. 産地 S590, S853, S636, S698(第10図参照)

③: 饒産



第9図 瀬棚層柱状対比図

凡例



第10図 瀬棚層柱状対比位置図・化石産出位置図および古流向図

示す砂層以外の各層準から海棲化石を普遍的に産する。



図版16 斜層理を示す砂岩(瀬棚層),西丹羽北方

瀬棚層産の有孔虫化石について石田正夫は,S590,S853,S636,S698の諸地点から産 出する有孔虫化石はほとんどが石灰質有孔虫によって占められ,砂質のものはきわめて少 ない。石灰質種のなかでもCassidulina spp.およびSigmomorphina spp.が非常に顕 著である。ことにCassidulina japonica, C. sublimbata, C. yabeiなどは現在の日本海で 深度約200m前後に多く,対馬海流と日本海固有の水塊との遷移地帯に多い種とされてお り,このことからみて,当時の海はおそらくlower neritic-upper bathyalの環境下に あったものと推定される。全般的にみて,東北地方に産する種と比較してみても,裏日本型 の種がきわめて優勢であるが,ごくわずかには表日本型の浅海種とされているTextularia spp., Quinqueloculina spp.などの少数種が混在している,としている。

地域内の本層は大観すると礫質岩 泥質岩の堆積輪廻が2回認められる。その第2輪廻 層は金原南方の向斜軸部において観察され,第1輪廻層に比較して薄い互層からなる。

本層下半部の泥質砂岩中には図版17に示すような円錐状の生痕と思われるものが観察され,一定の層準を示すものと思われる。これは松井²⁵⁾(1957)の常磐炭田鮮新統多賀層群中に認められる泥岩塊と同じ成因によるものと思われる。

本層中に発達する斜層理を計測し,これを復原して古流系の方向を推定した(第10図)。 本地域内における瀬棚層の厚さは130mをこえない。



図版17 瀬棚層下部に見られる生痕, 西丹羽北方

#### .4 第 四 系

本域内に分布する第四系は更新世の 大谷地層(Oy)・最高位段丘堆積層 (t₀)・高位段丘堆積層(t₁)・中位段 丘堆積層(t₂)・低位段丘堆積層(t₃), 現世に属する砂丘および沖積層に分け られる。

大谷地層は最内沢から大谷地にか けてと,愛知北東部との利別川に面す る低地に分布する。最高位段丘堆積層 は標高200m以上の地域に小範囲に分 布する。高位 - 中位 - 低位段丘堆積層 の関係は,第11図および図版18に示し たように地域南部の鵜泊付近で3段の 海岸段丘として観察され,それぞれの



段丘に対応する河岸段丘堆積層を高位段丘堆積層 - 低位段丘堆積層として扱った。



図版18 海上から鵜泊海岸の高位段丘(t1)-低位段丘(t3)面を望む

砂丘は最内沢口から太櫓川河口まで,利別川河口を中心に3列認められる。その内,内 陸側の第1砂丘(s₁)は更新世のいわゆる古砂丘に属する疑いがある。沖積層は利別川を はじめ各河川の氾濫原堆積物や崖錐堆積物が発達する。

大谷地層(Oy)

三谷ほか³¹⁾命名。

大谷地付近の比高約10mの崖を模式地とする(第12図)。

模式地および最内沢付近と愛知北東方との小区域に分布する。

下位層との関係は、下限がいずれも沖積層下に没して判然としない。

岩質は未凝固の砂・粘土および礫を主とし,褐鉄鉱・泥炭を挾む。最内沢付近では斜層 理が著しい。層厚は30m以上と推算される。

三谷らは,大谷地層の分布と段丘礫層との関係から,本層の時代を鮮新世末期としてい る。しかし,滝ノ沢上流で本層と同定されている地層は高位段丘堆積層に相当し,また, 丹羽からポン目名川に越える峠に分布する砂質岩は瀬棚層に相当する。

大谷地層は明らかに瀬棚層以下とは分布を異にしており,また高位段丘以下3段の段丘 堆積層に覆われている。以上のことから,大谷地層の時代については,決定的な要素はな いが,一応第四紀初期の堆積層とした。 最高位段丘堆積層 $(t_0)$ 

地域北限の標高約200m以上の 区域および南東端の同標高の地域 に分布し,平坦面を形成する。

下位層および低位の段丘との 関係は,地域外北方の馬場川上流 から真駒内川流域に越える坊主山 (340.1m)ふもとの農道で観察さ れる。ここでは,小川峠層の凝灰角 礫岩の上に,淘汰の悪い変質した 安山岩角礫と緑色凝灰岩礫とが載 っている。また,その小川峠層の 凝灰角礫岩を帯状に露出させて, 一段下位の高位段丘堆積層が分布

する。一方,南部における本層





第12図 大谷地層柱状図

は,域外南方の日進からパンケオイチャヌンペ川に下る道路の切割で観察される。主として人頭大以下の円礫からなる。礫種はチャート・ホルンフェルス・変朽安山岩および安山 岩など,太櫓層以下先第三系の地層から由来したものが多い。



第13図 高位段丘堆積層(t₁)対比図

高位段丘堆積層 $(t_1)$ 

本層は前述したように,鵜泊小学校うらの平坦面を形成する。

本層は模式地のほか,野合・山越・雲内・三浦山形および鈴野原など,地域内で最も広 く分布する。

鵜泊付近では標高約30m,太櫓中学校付近では約90m,西丹羽付近では約90mから最高200mの地域に分布している。

本層の厚さは80m以下と推算される。



図版19 高位段丘(t1) - 中位段丘(t2) 面を望む, 鵜泊・良瑠石海岸

第13図および図版19に示したように,中部に泥炭または腐植質土を挾むことが特徴であ る。岩相はところによって異なり,太櫓中学校うらの崖では,斜層理を示す未凝固の細~ 中粒砂からなり,粒度組成上海浜の砂相を示す。その他の地点では,ほとんど淘汰の良い 礫層からなる。

礫の組成は地域によって異なり,南部の雲内付近ではチャートおよびホルンフェルスが 主であるが,北部の西丹羽付近ではチャート>花崗岩質岩類>安山岩からなり,丹羽北部 では安山岩 チャート・流紋岩および花崗岩質岩類の組成を示す。

礫の粒径は,地域中央部から南北両方に向かって大となる。西丹羽付近では径5-10cm が最も多いが,その他の地域では人頭大~最大径60cmていどの礫が多い。

上述の泥炭または腐植質土の上位に重なる礫(砂)層は,下位の礫(砂)層に比較して淘汰 が悪く,シルトを混在する。

中位段丘堆積層 $(t_2)$ 

本層は鵜泊小学校校庭の標高約20mの平坦面を形成する。

神丘付近に最も広く分布するほか, 丹羽・大谷地および太櫓川流域などに分布する。

岩相は,鵜泊付近では下部は石英質砂岩の亜円礫,上部はアルコーズ砂からなる。良瑠 石から古櫓多にかけてはアルコーズ砂からなり,基底部に花崗閃緑岩の巨礫を含む。その 他の地域では,いずれも高位段丘堆積層から由来したものと思われる礫からなる。神丘付 近では安山岩 花崗岩質岩の組成を示し,最大径は53cmに達する(図版20)。



図版20 瀬棚層砂岩を覆う中位段丘堆積層(t₂)の礫,神丘切割

低位段丘堆積層 $(t_3)$ 

本層は鵜泊付近で標高約15mの平坦面を形成する。

模式地では,ホルンフェルスおよび粘板岩の角礫からなり,花崗閃緑岩の巨礫を含む。 本層は河岸段丘として各河川の流域で観察される。真駒内川・目名川では東岸に,パン ケオイチャヌンペ川では西岸に偏在することが特徴的である。

砂 丘 (s₃) - (s₁)

最内沢から太櫓川河口にかけて,3列の海岸砂丘が分布する。内陸側から第1砂丘(s₁)-第3砂丘(s₃)とすると,海岸側の第2砂丘(s₂)および第3砂丘(s₃)は現海岸線と平行に分 布するが,内陸側の第1砂丘(s₁)は現河川の上流側に深く湾入し,s₂・s₃とは分布形態を 異にする。このため第1砂丘(s₁)は更新世の,いわゆる古砂丘の疑いがあり,今後の研究 にまつところが多い。

砂丘はほとんど泥質物および礫を含まず,分級の良い細~中粒砂からなる。乾式粒度分 析の一例を第14図に示す。本図によるs₁・s₂・s₃の淘汰度Soはそれぞれ1.328・1.224・ 0.909, 歪度Skは0.885・1.360・1.207, 尖度Kは0.222・0.200・0.289と計算される。



細実線は K_{RUMBEIN}¹⁹⁾(1951)による 第14図 砂丘砂の粒度累積度数曲線図 海岸寄りの第3砂丘(s₃) には地表下20~50cmに腐植 質土が挾まれている(図版 21)。

沖 積 層

沖積層には現河床堆積層, 氾濫原堆積層および崖錐堆積 層がある。

現河床堆積層および氾濫原 堆積層は,規模の大小はある が,利別川をはじめとする各 河川にそれぞれ発達する。上 流部では礫が下流部では砂が 主部を占め,ともに泥を含 む。利別川下流では泥炭が発 達する。

崖錐堆積層は真駒内層から上位の地層が分布する小沢の頂部に発達する。



図版21 第3砂丘(s₃) 最内沢口左岸

#### .5 地質構造

本図幅地域の地質構造は,地域の北東隅と南西隅とに露出する先第三系の分布区と,そ の間の大きな複向斜構造部とに分けられる。この向斜構造はほぼ北北西 - 南南東方向の軸 を有し,新第三系の地層群からなっている。この大構造の中に下記の褶曲構造と断層構造 とが認められる(第8図地質構造図参照)。

.5.1 褶曲構造

馬場川 若松向斜構造は,地域西側にほぼ南北方向の軸をもつ向斜構造で,北部の馬場 川向斜の南部への延長が若松向斜にあたる。

馬場川向斜は瀬棚東方馬場川沿いに分布し,その西翼は走向ほぼ南北で東に5-8°のゆ るやかな傾斜を示しているが,東翼のそれは西に30°内外の急傾斜を示しており,非対称 の向斜構造である。向斜軸の連続は良好でなく,むしろ地層の分布によって向斜軸が推定 されるに過ぎない。

南部の若松向斜は,石淵からサキリカンナイをへて小川峠まで追跡される。向斜軸の方 向は北部では南北,南部では北北西-南南東を示している。東西両翼の傾斜はともに3~ 10[°]と緩く対称的な構造を示している。向斜軸は馬場川向斜ほど不明瞭でなく,地層の分 布によってよく追跡される。

馬場川 - 若松背斜構造は, 先の向斜構造の東側に接近して並走している。

馬場川背斜は,東西両翼ともに30°の傾斜を示すが,南部では緩く北部では傾斜が急に なっている。

馬場川背斜の南側延長にあたる若松背斜は東翼で5~30°,西翼側では7~20°の傾斜を 示している。

馬場川 - 若松向斜および背斜構造はともに向・背斜軸にうねりが観察され,地域によっ て走向および傾斜が一定しない。

濁川向・背斜構造は,地域南東部濁川に並走しており,ほぼ南北方向の軸をもつ-組の 褶曲構造で,東西両翼ともに3~6°の緩い傾斜を示している。北限は丸山断層で切られ, その北方への延長は不明である。傾斜が緩いうえに褶曲軸のうねりの影響もあって,馬場 川-若松向斜および背斜構造と同様に褶曲軸の追跡は困難である。

これらの褶曲構造のほか,濁川褶曲構造の東側に小向・背斜構造が推定される。

丹羽向斜構造は,先に述べた大きな複向斜構造の中心部に位置する向斜構造で,瀬棚層 の分布と走向傾斜から認められたものであるが,瀬棚層下位の地層群の分布および走向傾 斜からもこの構造が認められる。向斜軸は地域北部の三浦山形から西丹羽をへて地域南部 の金原にかけてはほぼ北北西 - 南南東方向に走っている。全般的に舟底状の断面をもつ向 斜構造を示し,北部の西翼部でN10°E,6°E,北翼部でN88°W,10°S,東翼部でN20° W,14°Wの走向傾斜をもっている。南部では東翼部が観察できないので詳細は不明であ るが,瀬棚層の走向傾斜などから傾斜5~10°の緩い向斜構造を示すものと推定される。

.5.2 断層構造

本図幅地域に見られる断層は,地域南西隅のNE-SW方向およびこれに直交するNW-SE方向の正断層と,丸山断層に見られる逆断層とがある。正断層は基盤岩類の地塊の差 別的沈降に,逆断層は褶曲運動に関連があるものと考えられる。

NE - SW正断層は,地域中央部愛知から 奴ノ沢をへて山越南方を通る比較的低角度の断層と,地域南西隅の花崗閃緑岩を切る急角度の断層とがある。

NW - SE正断層は,地域南西隅で花崗閃緑岩と太櫓層とを切る,太櫓層堆積後に完成した断層で,傾斜は80°SWを示す。

また,地域中央南部で花崗閃緑岩の小分布を示すNWW-SEE方向の断層は,傾斜78[°] Sの正断層で,太櫓層堆積後馬場川層堆積以前に活動したことを示している。

丸山断層は,丸山北方の崖と西丹羽北方で推定された。丸山北方では,丸山断層に伴う ものと思われる小断層群が観察されることおよびこの地域の鍵層K₃の不連続とから推定 したものである。この小断層群は,平均走向N23°E,傾斜39°NE西側落ちの逆断層を 示している。一方,この北方延長の西丹羽北方では,断層の東側地塊の鍵層K₁およびそ れをおおう瀬棚層が66°Eの急傾斜を示している。これはおそらく断層の引きずりによる ものと思われる。

層位落差は丸山付近で100mと推算される。

本断層の西側地塊の西丹羽西方では断層にそって向斜構造が推定される。

#### .6 地史学的考察

先第三系,いわゆる"古生層"に迸入した花崗閃緑岩は,古生層に熱変質を与えるとと もに冷却固結して基盤岩類を形成した。その後,先第三紀の永い削剝の時期をへて断裂・ 断層を生じ,差別的な沈降・上昇地塊を出現させながら全体として沈降区に転じ,著しい 火山活動とともに新第三紀の地層群を堆積した。

このような背景のもとに太櫓層の堆積がはじまった。その初期は火山活動もはげしくな

く,比較的低地の地域に良瑠石部層に代表される淡水環境の堆積があり,次いで火山活動 の優勢な太櫓層主部を形成した。後期に入り再び淡水環境の嗣内部層を堆積すると同時に 一部地域の隆起があり削剝が行なわれた。

馬場川層の堆積期は,この地域の沈降と火山活動が広範囲に行なわれた。馬場川層堆積 の初期には,盆地は太櫓層の堆積盆より広がったことが,地層の覆蔽現象と海棲貝化石の 産出などから推定される。

馬場川層堆積後期に入って再び火山活動が激しくなり,火山砕屑岩の堆積や溶岩の噴出 を見た。

北桧山層群堆積期・は,馬場川層堆積期・と同様の堆積盆の広がりが推定されるが,一部 の地域で太櫓層上に覆蔽する関係があるので,馬場川期と北桧山期の間に隆起・削剝の現 象があったと思われる。

この太櫓期^{**}と馬場川期との間および馬場川期と北桧山期との間の一時的な降起運動 は,一部の正断層と馬場川 - 若松向斜および背斜構造に見られる小ドーム・盆状構造を形 成した。これが,現在見られるこれら向,背斜軸のうねりとして表現されているものと考 えられる。

北桧山層群は海成の一連の地層群である。しかし,前半は馬場川層堆積期の火山活動の 影響が顕著に表現されている小川峠層の堆積を見たが,後半は比較的静穏な環境となり真 駒内層を堆積している。

その後この地域は再び隆起地区となり,同時に褶曲運動をはじめ,向斜・背斜が形成された。すなわち,丸山断層(逆断層),および馬場川・若松・濁川および丹羽の褶曲構造が それである。

瀬棚層堆積期に入って,再びこの地域は沈降して瀬棚層の海進となるが,この後も褶曲 運動は引き続き行なわれ,瀬棚層中に見られる丹羽向斜および丸山断層を完成させたと考 えられる。

第四紀に入っては海水準の変動による段丘堆積層の形成が主体となっているが,その初 期の大谷地層の堆積状態は不明の点が多く,今後の研究課題としたい。

^{*}以下本文中では北桧山期および馬場川期と略記もする。

^{**}太櫓層堆積期を意味する。

応用地質

.1 石 炭

石炭は太櫓層良瑠石部層と嗣内部層との2層準 に賦存する。これらは三谷ほか³¹⁾によって報告さ れている。それによると、石炭は瀬棚北方梅花都 の暗礁下と、虻羅の沢にその分布が確認されてい る。前者はおそらく良瑠石部層に、後者は嗣内部 層に対比される。筆者らの調査した時点では虻羅 の沢の旧坑は崩落し、露頭も表土におおわれて、 僅かに第4図に示したような炭柱図が採取された にすぎない。嗣内部層中の石炭は同層最上部に賦 存し、レンズ状の産状を示すこと、および上位層の 不整合によってごく限られた分布を示すことから、 将来とも稼行対象となることはないと思われる。

#### .2 マンガン

北桧山町の前身の一つである太櫓村史"太櫓村 勢一斑"に次のような記述がある。「明治四十三 年 字栄石二満俺砿アルヲ発見セラレテヨリ砿山 熱漸ク勃興ス - その産額大正三年815貫 16,330円, 四年 457貫 11,952円,五年 671貫 18,500円」



本域内で往時隆盛を誇ったマンガン鉱山も,現在では瀬棚満俺鉱業所弘龍坑一坑が残っ ているにすぎない。弘龍坑は馬場川支流滝ノ沢の枝沢に位置する。

鉱床は小川峠層下部層の軽石凝灰岩中で認められ,その層理に平行なものと,割れ目を 充塡した形状をとるものとがある。昭和40年10月現在で約200tの貯鉱が見られた。その 鉱石のX線回折および反射顕微鏡観察は地質調査所北海道支所岡部賢二技官によって行な われ, MnO₂のPolianiteであることが判明した。次にX線回折図および解析結果を示す。





第16図 マンガン鉱X線回折図

1. 瀬棚弘	龍 坑	2. ASTM(N	<b>o.</b> 4-0951)
d (A)	I	d (A)	I
3.14	10	3.14	100
2.42	5	2.42	80
		2.22	10
2.12	2.5	2.12	50
1.98	1	1.99	10
1.63	3	1.64	80
1.57	1	1.57	30
1.44	1		

第4表 マンガン鉱X線回折データ

このほか,マンガン鉱床を胚胎する層準は,目名川流域において花崗閃緑岩を直接覆う 馬場川層基底付近に認められる。

#### .3 珪藻土

瀬棚北方の海岸に点在する嗣内部層は,ほとんど珪藻質泥岩からなっている。奥野⁴⁵⁾ (1958)によると,これら泥岩から産出する珪藻化石はすべて淡水棲で,湖成の珪藻土で ある。*Melosira* spp.のほか瀬棚産以外に化石種としても現世種としても未報告の珍種 *Gomphopleira Frickei* Reicheltを産出するとされている。

珪藻土の露頭は,北から虻羅トンネル入口・嗣内・中歌および梅花都の海岸と,馬場川 瀬棚橋の上流に分布する。これらの内,虻羅と梅花都のものは北海道珪藻土工業株式会社 によって1941年から採掘され,セメント混合材・保温材・農薬増量材およびこんろの原料 として使用されたが,1958年休山し現在におよんでいる。

虻羅産珪藻土の化学分析の一例を示す。

SiO2 67.62% , Al2O3 15.17% , Fe2O3 2.27% , CaO 0.44% , MgO 1.54% , Ig . loss 7.27% , 合計94.41%

#### .4 石 材

本地域の石材資源は古くから利用されている。太櫓村勢一斑によると,水華岬付近の花 崗閃緑岩は昭和4年,132立坪採掘され売価33円で古櫓多付近の道路石垣用に使用された ことが報告されている。

石材は前述の花崗閃緑岩のほか,安山岩および玄武岩が小規模に採掘され,建築材,道路敷 石として使用されている。調査期間中および近年採掘されていたものは次のとおりである。

1. 高山ノ下付近の玄武岩

2. 石淵付近の玄武岩

3. ベニカモイ西方の安山岩

上記のほか, 瀬棚層中部(とくに豊田付近)および砂丘の砂層や, 高位~低位段丘堆積 層の礫はそのまま建築材として使用可能で, かつ相当量が期待される。

## .5 温泉および地下水

丹羽温泉

所在地:瀬棚郡北桧山町西丹羽

この温泉は通商産業省石油および可燃性 天然ガス資源開発法にもとづく試掘助成井 に湧出したものである。地質の詳細につい ては,島田⁵¹⁾(1961)が述べているが,深 度511.3m以深が玄武岩 粗粒玄武岩から なり,ストレーナは500~585mに仕上げ, 孔底温度54.3°C,口元温度28°Cである。 第17図井戸仕様図のように深度280m付近



みだわ

^{*}分析:河島ほか18)(1943)



図版22 葦原の中の泉源,丹羽温泉

から低温の地下水が混入している可能性もあり,仕上げの方法によっては,さらに高温の 温水が得られるであろう。

分析書を次に示す。

温泉分析書

申請者 瀬棚郡北桧山町西丹羽 485 田中房雄

温 泉(源泉名)

- 1 湧出地 瀬棚郡北桧山町西丹羽 348
- 1 採取日時 昭和35年5月17日 天候 雨 気温 17°C
- 1 源泉状況 609m ボーリングによる自噴
- 1 性 状 無色透明
- 1 湧出量 約201 / min
- 1 pH 7.1(硝子電極)
- 1 触媒作用 ベンチジン反応 フェノールフタレン反応 +
- 1 蒸発残留物(1kg中)8.710g
- 1 含有成分およびその分量(1kg中)

	ミリグラム	ミリバール	ミリバール%		
H	_		_		
ĸ	121.5	3.107	2.16		
Na	2,860	124.4	86.66		
NH4	-	_			
Ca″	150	7.485	5.21		
Mg″	89	7.320	5.10		
Zn″	0.008	0.0002	0.00		
フェ□Fe″	1.88	0.0673	0.04		
フェリFe″	_	-			
Cu∥	0.018	0.0005	0.00		
Mn″	1.22	0.0444	0.03		
A1″	10.2	1.13	0.79		
Pb∥	0.005	0.000	0.00		
計	3,233.8	143.5	100		
CI	4,224.5	119.12	82.78		
HSO41	_	_			
SO₄″	1,008.7	21.00	14.59		
HPO ₄ ″	0.55	0.0114	0.01		
HASO ₄ ″	0.028	0.0040	0.00		
HCO ₃ ′	228.7	3.748	2.60		
CO ₃ ′	_	_	_		
$CH_4'$	—	_			
H ₂ S′	_		_		
F′	0.328	0.0172	0.01		
合 計	5,462.8	143.9	100		

#### 通計 8,696.6mg

	ミリグラム	ミリモル
H ₂ SiO ₃	197.0	2.523
HBO ₃	24.6	0.561
	合計 8,918.2mg	
CO ₂	19.8	0.450
H ₂ S	0.25	0.0073
	≪211 0 020 2mm a	

総計 8,938.2mg

泉質 含亡硝食塩泉

昭和35年5月26日

北海道衛生研究所技師 中 谷 省 三

地下水

利別川流域の沖積平野部では掘抜井戸によって飲料水および灌漑用水を採取している。 可燃性天然ガス調査を目的とした水質分析が三谷ほか³¹⁾によって行なわれている。

真駒内層および瀬棚層は,砂岩や凝灰岩など粗鬆な岩質を主とし,真駒内層は細粒泥質 岩を挾んで,地下水の貯溜に適している。そのうえ,地質構造はゆるい向斜構造を示して おり,沖積平野部では地下水が自噴しているものと思われる。



図版23 掘抜自噴井,豊田小学校

ひやみず

そのほか,冷水の地名に見られるように天然の湧泉も知られている。これは冷水付近や 西丹羽北方の崖で見られるように,段丘堆積層中の礫層が褐鉄鉱で汚染され,広く発達す る高位段丘堆積層(t₁)が良好な地下水の流路となっていることを示している。

- ASANO, K. (1938) : On some Pliocene Foraminifera from the Setana Beds, Hokkaido, Jap. Jour. Geol. Geogr., vol.15, nos.1 - 2, pp.87 - 103
- 2) 地質調査所(1967):北海道金属非金属鉱床総覧
- 千谷好之助(1918):後志国太櫓郡鉱物調査報文,地質調査所,鉱物調査報告,no.
   26,pp.1-39
- 4) 土居繁雄・針谷 宥・二間瀬洌・佐藤 巌・小田切敏雄(1961):太櫓地域のマンガン鉱床,北海道地下資源調査資料,no.65,北海道開発庁
- 5) 福富忠男・矢島澄策・茶木久芳・下斗米俊夫・古館兼治(1936a):北海道有用砿産 物調査(第7報),北海道工業試験場報告,no.61,pp.1-120
- 福富忠男・矢島澄策・陸川正明(1936b):北海道有用砿産物調査(第9報),北海道 工業試験場報告,no.66
- 7) 浜野一彦(1943):後志国太櫓郡及久遠郡地方ノ地質並二岩石,北海道大学修論(手記)
- 8) 橋本 亘・石川俊夫・舟橋三男・斉藤昌之・長尾捨一(1958):20万分の1北海道地 質図および同説明書,北海道地下資源調査所
- 9) 橋本 亘(1958 1961):北海道の地質,地下資源 nos.1 14
- 10) 橋本 亘・猪郷久義(1962):北海道西南部より中生代化石の発見(短報),地質学 雑誌,vol.68,no.804,p.537
- 11) 橋本 亘・菅野三郎・品田 穰・大島一精(1963):北海道渡島半島今金 国縫 八 雲間の地質,地質学雑誌,vol.69,no.812,pp.228 - 238
- 12) 秦 光男(1967):西部北海道熊石町付近の新第三系,地質調査所北海道支所調査研 究報告会演旨録, no.18, pp.17-21
- 13) 伊木常誠(1912):後志国東瀬棚村及太櫓村ノ満俺鉱・後志国瀬棚村中歌及虻羅ノ満 俺鉱,鉱物調査報告,no.7,pp.75-78
- 14) 池谷仙之・植松健児(1968):瀬棚層と黒松内層との関係について,地質学雑誌, vol.74, no.1, pp.21 - 36
- 15) KANEHARA, K. (1942) : Some Molluscan Remains from the Setana Series of Hokkaido and from the Taga Series of the Joban Coal-field of Iwaki, Jap. Jour. Geol. Geogr., vol.18, no.4, pp.133 - 140
- 16) KANNO, S. (1962) : Molluscan Fauna from the So-called Setana Formation, Southwestern Hokkaido, Japan, Tokyo Univ. Educ.Sci. Rep.no.73, pp.49-62
- 17) 河島千尋・素木洋一(1941):瀬棚郡瀬棚町付近の珪藻土,大日本窯業協会雑誌, vol.49, no.582, pp.354 - 355
- 18) 河島千尋・素木洋一(1943):本邦各地珪藻土原土の化学組成について,大日本窯業

協会雑誌, vol.51. no.603, pp.127 - 132

- KRUMBEIN, W.C. and SLOSS, L.L. (1951) : Stratigraphy and Sedimentation, pp.71-75, W. H. Freeman and Company, San Francisco, California
- 20) 窪田 薫(1949): Placopectenの進化,鉱物と地質, vol.3, no.1, pp.19-21
- 21) 窪田 薫(1950a):北海道新第三系産Pecten (Placopecten)の新種,鉱物と地質, vol.3, no.5, pp.183 - 185
- 22) 窪田 薫(1950b):北日本新生代化石解説(瀬棚統のイタヤガイ科化石),新生代の研究, no.6, pp.12-18
- 23) 河野義礼・植田良夫(1966):本邦産火成岩のK A dating()・東北日本の花崗岩
   類- 岩鉱, vol.56, no.2, pp.41 55
- MASUDA, K. and SAWADA, Y. (1961) : Some New Tertiary Pectinids from Southwestern Hokkaido, Japan, Jap. Jour. Geol. Geogr., vol.32, no.1, pp.19-29
- 25) 松井 寛(1957):常磐炭田地質図ならびに同説明書,日本炭田図 ,地質調査所, p.42
- 26) 松井 愈(1955a):西南北海道の新第三紀層の層序と構造(演旨),地質学雑誌,vol.
   61, no.718, p.333
- 27) 松井 愈(1955b):今金町美利河付近の新第三紀層(予報),北海道地質要報,no.30, pp.28-29
- 28) 松井 愈·他9名(1955c):北海道後志国今金町東北部地域地質鉱床調査報告,北 海道地下資源調査所
- 29) 松本彦七郎(1916):本邦哺乳類化石床表,地質学雑誌,vol.23,no.275,pp.293 294
- 30) MATSUMOTO, H. (1918) : A Contribution to the Morphology, Paleobiology and Systematic of *Desmostylus*, Sci. Rep. Tohoku Imp. Univ., (2nd Ser.)Geol. vol.3, pp.61 - 73
- 31) 三谷勝利・斉藤尚志・長尾捨一(1961):太櫓地域の石炭および可燃性天然ガス調査 報告,北海道地下資源調査資料,no.67,北海道開発庁
- 32) 盛谷智之(1964):中新世層状マンガン鉱床の層準について,地球科学, no.72, pp. 17-23
- 33) 長浜春夫(1965):斜層理から見た北西九州第三紀層の堆積,地質調査所報告,no.211,地質調査所
- 34) 長尾 巧(1932):北海道西南部の新生代層と最近の地史,地質学雑誌,vol.39, no.465, pp.320-322
- 35) 長尾 巧・佐々保雄(1933a):北海道西南部の新生代層と最近の地史(1),地質学雑誌, vol.40, no.480, pp.555 577

- 36) 長尾 巧・佐々保雄(1933b):北海道西南部の新生代層と最近の地史(2),地質学雑
   誌, vol.40, no.483, pp.750 775
- 37) NAGAO, T. (1933c) : The Cenozoic History of Western Hokkaido with Special Reference to the Periods of volcanism, Proc. 5th Pac. Sci. Cong. (Canada)
- 38) 長尾 巧・佐々保雄(1934a):北海道西南部の新生代層と最近の地史(3),地質学雑誌,vol.41,no.485,pp.47-60
- 39) 長尾 巧(1934b):北海道における瀬棚期後の海成化石層,地質学雑誌, vol.41, no.487, pp.205 207
- 40) 長尾 巧・佐々保雄(1934c):北海道西南部の新生代層と最近の地史(4),地質学雑誌, vol.41, no.488, pp.211 - 260
- 41) 成田英吉・五十嵐昭明・山田敬一(1967):北海道瀬棚郡今金町山宝鉱山のマンガン鉱
   床,岩鉱,vol.57,no.2,pp.57-67
- 42) 根本忠寛(1960):北海道南西部の新第三紀層状鉱床,北海道鉱山学会誌,vol.16, no.2,pp.21-24
- 43) 根本隆文・佐川 昭(1965):瀬棚郡北桧山町良瑠石川上流域の放射能強度について, 地質調査所北海道支所調査研究報告会演旨録, no.17, p.11
- 44) 大炊御門経輝(1935):北海道胆振国山越郡ポンセイヨウベツ川および夏路の瀬棚統 貝化石について,地球,vol.23,no.4,pp.288-293
- 45) 奥野春雄(1958):北海道瀬棚町の珪藻土について(1)(2),植物研究雑誌,vol.33,no.
   3,pp.70-76,no.7,pp.193-198
- 46) 奥野春雄(1959):北海道瀬棚町の珪藻土について(3)(4)(5),植物研究雑誌,vol.34, no.1,pp.25-29,no.9,pp.272-277,no.12,pp.353-360
- 47) 佐川 昭・根本隆文・盛谷智之・坂巻幸雄・中川忠夫(1969):北海道太櫓地区の地 質とウランの産状,地質調査所報告,no.232,pp.469-481
- 48) 佐々保雄(1936):北海道新生代層に関する二・三の考察,地質学雑誌,vol.43,no.
   513,pp.465-467
- 49) 佐藤伝蔵(1922):北海道硅藻土調査報文,1,後志国瀬棚郡瀬棚町ノ硅藻土,地質 調査所,工業原料用鉱物調査報告,no.12,pp.2-7
- 50) 沢田義男(1961):北海道瀬棚郡今金町北方の新第三紀層,室蘭工大研究報告,vol. 3, no.4, pp.635 - 644
- 51) 島田忠夫(1961):北海道瀬棚郡瀬棚試掘地について(概報),地質調査所月報,vol. 12,no.10,pp.69-74
- 52) 白井健裕(1959):瀬棚層産化石有孔虫群集を中心とする黒松内地域の地質につい て,北海道地質要報,no.38,pp.1-12
- 53) SHIRAI, T. (1960) : New genus and species of Foraminifera from the Pliocene formation, Southwestern Hokkaido, Jour. Fac. Sci. Hokkaido Univ. Ser.

4, vol.10, no.3, pp.537-543

- 54) TANAI, T. and SUZUKI, N. (1963) : Miocene Floras of Southwestern Hokkaido, Japan, Tertiary Floras of Japan, The Collab. Assoc. to Commem. the 80th Anniv. of the Geol. Surv. of Jap. pp.7 - 149
- 55) 矢島澄作・陸川正明(1939):10万分の1地質図幅「長万部」および同説明書,地質 調査報告 no.3,北海道工業試験場
- 56) 山口四郎(1932):太櫓村並びに久遠村地方の地質及び岩石に就きて,北海道大学卒 論(手記)
- 57) 吉田 尚・山口昇一(1967):北海道松前郡大千軒岳付近の中部石炭紀化石(短報), 地質学雑誌, vol.73, no.5, p.260
- 58) 吉井守正・秦 光男・村山正郎・沢村孝之肋(1969):5万分の1地質図幅「久遠」 および同説明書,北海道開発庁(未公表)

# EXPLANATORY TEXT OF THE GEOLOGICAL MAP OF JAPAN Scale 1:50,000

SETANA

Sapporo, No.57

By

Akira SAGAWA & Yoshihiro UEDA (Written in 1969)

(Abstract)

## GEOLOGY

This geological sheet map "SETANA" covers the area between  $139^{\circ}45'$  and  $140^{\circ}00'$  East longitude and  $42^{\circ}20'$  and  $42^{\circ}30'$  North latitude, located in the southwestern part of Hokkaido, the northernmost island of Japan. In this area, the Neogene Tertiary systems are widely distributed unconformably, covering the sedimentary rocks of the unknown age and granodiorites. The stratigraphic sequence of the area is shown briefly in the following tablel 1.

Geological age		Stratigraphy (1	Stratigraphy (Thickness in meter)					
	Recent	Alluvial deposits Dune						
		Lower terrace deposits (10±)						
Quaternary		Middle terrace depos	its (20±)					
	Pleisto-	Higher terrace deposi	ts (80-)					
		Highest terrace deposits (30)						
		Oyachi formation (30	±)					
	Pliocene	Setana formation (130+)						
			Makomanai formation (255+)					
Neogene		Kitaniyama group	Kogawatōge formation (88+)					
Tertiary	Miocene	Babagawa formation (200+)						
		Futoro formation	Tsukunai member(40+) Main part (400+)					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Raruishi member(30+)					
Pre-Tertiary Pre-Tertiary rocks								

Table 1 Stratigraphic sequence in the Setana sheet

PRE-TERTIARY

Pre-Tertiary rocks, the basement rocks of the Neogene Tertiary system, outcrop at the southwestern and northeastern corner of the mapped area, but they are widely extend to the neighbouring district. The basement rocks in the area are composed of the sedimentary formation of uncertain age, which are intruded by the Cretaceous granodiorite and aplite dikes.

The sedimentary formation consists mainly of dark grey colored clayslate, grey massive chert, thin bedded grey colored sandstone and schalstein.

The granodiorite is light grey colored medium-grained hornblendbiotite granodiorite.

NEOGENE TERTIARY

Neogene Tertiary in the area is divided into Futoro formation, Babagawa formation, Kitahiyama group and Setana formation, in ascending order.

The **Futoro formation** is composed almost wholly of pyroclastic rocks with subordinate sandstone and siltstone, unconformably covering pre-Tertiary rocks. The formation is divided into following three parts, in ascending order.

The **Raruishi member**, the lower part of the formation, consists of the brackish water sediments and is characterized by the frequent occurrence of whity colored sandstone and coal seams.

The **Main part** of the formation consists mainly of pyroclastic rocks of variegated colors and lavas and sills of andesite.

The **Tsukunai member**, the upper part of the formation, is composed mostly of diatomaceous siltstone, with thin beds of tuffaceous siltstone and sandstone. This diatomaceus bed is from 5 to 40 meters in thickness, and is distributed discontinuously along the sea cliff due to cutting by several fault. The diatomaceous bed contains well preserved plant fossils such as leaves, fruits and cornscales. On the basis of plant fossils, diatoms and general stratigraphy, this plant-bearing member has been considered to be of middle Miocene age, and is correlated with the Sekinai formation of the Kumaishi sheet mapped area.

The **Babagawa formation** covers unconformably the Futoro formation with a basal conglomerate. The lower part of the formation consists of dark colored siltstone, sandy shale, silty fine-grained sandstone and medium-grained sandstone repeated in various thickness, and is essentiary marine. The upper part of the formation consists mainly of andesitic tuff-breccia and greentuff, with interbedded tuffaceous sandstone, and lenticular andesitic lavas and sills.

The **Kitahiyama group** lies unconformably on the older Babagawa and Futoro formation. The group is divided into two formation of the Kogawatōge formation and Makomanai formation. The **Kogawatoge formation**, the lower formation of the group, consists mainly of pumice tuff accompanied with siltstone. The **Makomanai formation**, the upper formation of the group, consists of siltstone with interbedded pumice tuff beds.

The Setana formation lies unconformably on the older complex consisting of the Kitahiyama group and the Babagawa formation. The formation is composed mainly of alternation of sandstone and siltstone containing marine fossils. (See table 3.1, 3.2 in Japanese text) The Setana formation is, according to the study of the fossils by Hashimoto(1963), referred to the age of Pliocene.

QUATERNARY

Pleistocene deposits in the area are mainly of terrestrial origin and is divided into two part, namely, older and younger Pleistcene. The former is the Oyachi formation and the latter forms several terrace deposits.

The **Oyachi formation** is seen in the Oyachi, and is built up of unconsolidated layers of sand, clay and peat.

Terrace deposits are built up of irregular accumulation of gravel, sand and clay, and they are developed extenssively in the mapped area. They can be classified into following four plains:a)the Highest terrace, b) the Higher terrace, c) the Middle terrace and d) the Lower terrace.

Recent deposits are developed along the Toshibestu river and its branches, and they consist of sand, clay and dune sand.

GEOLOGIC STRUCTURE

The major structure which is shown by the strata of Neogene Tertiary is a synclinorium trending NNE-SSW. There are numerous minor folds of NNE-SSW in direction and some domes and basins on a small scale. Fault system are classified into those of NE, NW, N-S and E-W and the fault of NE trend is the most predominant.

ECONOMIC GEOLOGY

Several underground resources such as manganese, coal, diatom earth, natural gas and mineral spring are hitherto known in the area.

The manganese deposits are found as a bedded form in the complicated formation which consists of andesitic tuff-breccia and agglomerate of the Futoro and Babagawa formations.

On the northern portion of Setana machi, the coal seams of the Futoro formation were worked on a small scale more than 20 years ago, but its production is unknown. Quality and thickness of the worked seams can not be clearly ascertained because of ill exposure by surface survey.

The diatomaceous deposits are found as bedded form in the Tsukunai member of the Futoro formation. The deposits was once prospected but failed.

The underground water in the area is found in Alluvial and terrace deposits and Tertiary strata along the Toshibetsu river.

昭和 45 年 3 月 25 日印刷 昭和 45 年 3 月 30 日発行

著作権所有 北海 道開発 庁

印刷者	柳	本	玉	秋
印刷所	中越	印刷製	紙株式	会社